2021
Paclitaxel increases axonal localization and vesicular trafficking of Nav1.7
Akin EJ, Alsaloum M, Higerd GP, Liu S, Zhao P, Dib-Hajj FB, Waxman SG, Dib-Hajj SD. Paclitaxel increases axonal localization and vesicular trafficking of Nav1.7. Brain 2021, 144: 1727-1737. PMID: 33734317, PMCID: PMC8320304, DOI: 10.1093/brain/awab113.Peer-Reviewed Original ResearchConceptsDorsal root ganglion neuronsChemotherapy-induced peripheral neuropathyGanglion neuronsSensory axonsNav1.7 channelsPTX treatmentSensory neuronsHuman sensory neuronsEffect of paclitaxelSodium channel Nav1.7Chemotherapy drug paclitaxelAxonal vesicular transportConcentrations of paclitaxelNav1.7 mRNAInflammatory mediatorsNav1.7 expressionPeripheral neuropathyInflammatory milieuPrimary afferentsInflammatory conditionsChannel expressionChannel Nav1.7Nav1.7Increased expressionAxonal localization
2018
Atypical changes in DRG neuron excitability and complex pain phenotype associated with a Nav1.7 mutation that massively hyperpolarizes activation
Huang J, Mis MA, Tanaka B, Adi T, Estacion M, Liu S, Walker S, Dib-Hajj SD, Waxman SG. Atypical changes in DRG neuron excitability and complex pain phenotype associated with a Nav1.7 mutation that massively hyperpolarizes activation. Scientific Reports 2018, 8: 1811. PMID: 29379075, PMCID: PMC5788866, DOI: 10.1038/s41598-018-20221-7.Peer-Reviewed Original ResearchConceptsNav1.7 mutationClinical presentationDRG neuronsPain sensationDorsal root ganglion neuronsDRG neuron excitabilityFunction Nav1.7 mutationsLoss of excitabilityAbsence of painSodium channel Nav1.7Function mutationsComplex pain phenotypesEpisodic painSevere painCorneal anesthesiaGanglion neuronsNeuron excitabilityClinical lossPain phenotypesPainChannel Nav1.7Atypical changesNav1.7 channelsClinical levelNeurons
2016
Dendritic spine remodeling following early and late Rac1 inhibition after spinal cord injury: evidence for a pain biomarker
Zhao P, Hill M, Liu S, Chen L, Bangalore L, Waxman SG, Tan AM. Dendritic spine remodeling following early and late Rac1 inhibition after spinal cord injury: evidence for a pain biomarker. Journal Of Neurophysiology 2016, 115: 2893-2910. PMID: 26936986, PMCID: PMC4922610, DOI: 10.1152/jn.01057.2015.Peer-Reviewed Original ResearchConceptsSpinal cord injuryNeuropathic painDendritic spine dysgenesisDendritic spinesCord injurySpine dysgenesisDorsal horn neuronsSpine profilesDendritic spine remodelingEffective clinical translationSensory dysfunctionSignificant complicationsNociceptive systemPain biomarkersSpine remodelingClinical conditionsPreclinical studiesRac1 activityEffective treatmentPainDrug responsivenessStructural biomarkersDisease statesRac1 inhibitionBiomarkersA painful neuropathy-associated Nav1.7 mutant leads to time-dependent degeneration of small-diameter axons associated with intracellular Ca2+ dysregulation and decrease in ATP levels
Rolyan H, Liu S, Hoeijmakers JG, Faber CG, Merkies IS, Lauria G, Black JA, Waxman SG. A painful neuropathy-associated Nav1.7 mutant leads to time-dependent degeneration of small-diameter axons associated with intracellular Ca2+ dysregulation and decrease in ATP levels. Molecular Pain 2016, 12: 1744806916674472. PMID: 27821467, PMCID: PMC5102167, DOI: 10.1177/1744806916674472.Peer-Reviewed Original ResearchConceptsSmall fiber neuropathySmall-diameter axonsTime-dependent degenerationDorsal root ganglion neuronsNerve fiber injuryNervous system disordersPrevious clinical reportsIntracellular calcium levelsMutant Nav1.7 channelsATP levelsAδ nerve fibersHigh altitude sicknessPainful neuropathyTime-dependent increaseFiber injuryClinical onsetGanglion neuronsOxygen species productionSystem disordersCalcium levelsClinical reportsDistal extremitiesIntracellular Ca2NeuropathyNav1.7 channels
2015
Ca2+ toxicity due to reverse Na+/Ca2+ exchange contributes to degeneration of neurites of DRG neurons induced by a neuropathy-associated Nav1.7 mutation
Estacion M, Vohra BP, Liu S, Hoeijmakers J, Faber CG, Merkies IS, Lauria G, Black JA, Waxman SG. Ca2+ toxicity due to reverse Na+/Ca2+ exchange contributes to degeneration of neurites of DRG neurons induced by a neuropathy-associated Nav1.7 mutation. Journal Of Neurophysiology 2015, 114: 1554-1564. PMID: 26156380, PMCID: PMC4561630, DOI: 10.1152/jn.00195.2015.Peer-Reviewed Original ResearchConceptsSmall fiber neuropathyDRG neuronsNav1.7 mutationCell bodiesDorsal root ganglion neuronsDRG cell bodiesModes of NCXIntraepidermal nerve fibersVoltage-gated sodium channel Nav1.7Sodium/calcium exchangerDegeneration of neuritesSodium channel Nav1.7Levels of intracellularTreatment of WTAxonal degenerationGanglion neuronsFunction missense mutationsNerve fibersAxon degenerationChannel Nav1.7Reverse NCXCalcium exchangerNav1.7DegenerationNeurons
2014
Dendritic spine dysgenesis contributes to hyperreflexia after spinal cord injury
Bandaru SP, Liu S, Waxman SG, Tan AM. Dendritic spine dysgenesis contributes to hyperreflexia after spinal cord injury. Journal Of Neurophysiology 2014, 113: 1598-1615. PMID: 25505110, PMCID: PMC4346729, DOI: 10.1152/jn.00566.2014.Peer-Reviewed Original ResearchMeSH KeywordsAminoquinolinesAnimalsDendritic SpinesH-ReflexMaleMotor NeuronsPyrimidinesRatsRats, Sprague-DawleyReflex, AbnormalSpinal Cord InjuriesConceptsSpinal cord injuryLevel of injuryH-reflexCord injuryStretch reflexDendritic spinesSpinal cord motor systemSpine morphologyContusion spinal cord injuryExaggerated tendon jerksSpinal cord contributesRate-dependent depressionSpine profilesDendritic spine dysgenesisΑ-motor neuronsH-reflex testingTonic stretch reflexVelocity-dependent increaseAdult Sprague-DawleyM-wave responsesAbnormal dendritic spinesSpinal stretch reflexAbnormal spine morphologyDendritic spine morphologyReflex dysfunctionContribution of sodium channels to lamellipodial protrusion and Rac1 and ERK1/2 activation in ATP‐stimulated microglia
Persson A, Estacion M, Ahn H, Liu S, Stamboulian‐Platel S, Waxman SG, Black JA. Contribution of sodium channels to lamellipodial protrusion and Rac1 and ERK1/2 activation in ATP‐stimulated microglia. Glia 2014, 62: 2080-2095. PMID: 25043721, DOI: 10.1002/glia.22728.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsAnimals, NewbornBrainCell MovementCells, CulturedEnzyme ActivationEnzyme InhibitorsGene Expression RegulationMembrane PotentialsMiceMice, TransgenicMicrogliaMitogen-Activated Protein Kinase 3NAV1.6 Voltage-Gated Sodium ChannelPseudopodiaRac1 GTP-Binding ProteinRatsRats, Sprague-DawleySignal TransductionSodium Channel BlockersConceptsActin-rich membrane protrusionsStream signaling cascadesAccumulation of Rac1Modulation of Rac1Sodium channel activityChannel activitySodium channelsP38α/βCellular polarizationMembrane protrusionsSignal transductionLamellipodial protrusionCellular pathwaysSignaling cascadesCoordinated processCytoskeletal elementsMembrane adhesionRac1Dependent pathwayPhosphorylated ERK1/2Central nervous systemATPERK1/2ATP stimulationActivated state
2013
Burn injury-induced mechanical allodynia is maintained by Rac1-regulated dendritic spine dysgenesis
Tan AM, Samad OA, Liu S, Bandaru S, Zhao P, Waxman SG. Burn injury-induced mechanical allodynia is maintained by Rac1-regulated dendritic spine dysgenesis. Experimental Neurology 2013, 248: 509-519. PMID: 23933578, DOI: 10.1016/j.expneurol.2013.07.017.Peer-Reviewed Original ResearchConceptsDendritic spine dysgenesisWDR neuronsNeuropathic painBurn injurySpine dysgenesisMechanical allodyniaInjury-induced chronic painInjury-induced mechanical allodyniaSpinal cord dorsal hornBurn-injured animalsHindpaw receptive fieldsInjury-induced painNeuropathic pain phenotypesSecond-degree burn injurySecond-degree burn modelDendritic spine morphologyDendritic spine shapeDorsal hornIntractable painMechanical painPain managementChronic painPain phenotypesElectrophysiological signsPreclinical models
2012
Neuropathy‐associated NaV1.7 variant I228M impairs integrity of dorsal root ganglion neuron axons
Persson A, Liu S, Faber CG, Merkies IS, Black JA, Waxman SG. Neuropathy‐associated NaV1.7 variant I228M impairs integrity of dorsal root ganglion neuron axons. Annals Of Neurology 2012, 73: 140-145. PMID: 23280954, DOI: 10.1002/ana.23725.Peer-Reviewed Original ResearchConceptsSmall fiber neuropathyIntraepidermal nerve fibersIdiopathic small fiber neuropathyNa-Ca exchangeDRG neuronsNeurite lengthSensory axonsLoss of IENFsReverse Na-Ca exchangeDorsal root ganglion neuronsPeripheral sensory axonsPeripheral nerve axonsSodium channel blockers carbamazepineSodium channel activityAxonal degenerationGanglion neuronsSpontaneous firingNerve fibersAxonal integrityNeuron axonsImpaired regenerationNerve axonsFunction variantsAxonsSodium channels
2008
Sodium channel activity modulates multiple functions in microglia
Black JA, Liu S, Waxman SG. Sodium channel activity modulates multiple functions in microglia. Glia 2008, 57: 1072-1081. PMID: 19115387, DOI: 10.1002/glia.20830.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsAnimals, NewbornBrainCell MovementCell ProliferationCells, CulturedCoculture TechniquesCytokinesGliosisInflammation MediatorsMicrogliaNAV1.1 Voltage-Gated Sodium ChannelNAV1.5 Voltage-Gated Sodium ChannelNAV1.6 Voltage-Gated Sodium ChannelNerve Tissue ProteinsPhagocytosisPhenytoinRatsRats, Sprague-DawleySodium Channel BlockersSodium ChannelsTetrodotoxinConceptsIL-1 betaIL-1 alphaSodium channelsTNF-alphaPhagocytic activitySodium channel blockadeSodium channel Nav1.1Central nervous systemVoltage-gated sodium channelsSodium channel activitySodium channel isoformsActivated microgliaIL-10IL-6MCP-1Microglial migrationChannel Nav1.1Cultured microgliaIL-2IL-4MicroM TTXChannel blockadeMed miceMicrogliaTissue insult
2006
A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons
Rush AM, Dib-Hajj SD, Liu S, Cummins TR, Black JA, Waxman SG. A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons. Proceedings Of The National Academy Of Sciences Of The United States Of America 2006, 103: 8245-8250. PMID: 16702558, PMCID: PMC1472458, DOI: 10.1073/pnas.0602813103.Peer-Reviewed Original ResearchConceptsNeuronal cell typesCell typesChannel mutationsSympathetic neuronsMembrane potentialDifferent cell typesSodium channel mutationsMolecular basisNeuropathic pain syndromesIon channel mutationsSympathetic ganglion neuronsTypes of neuronsSingle mutationSodium channel Nav1.7Ion channelsMutationsPain syndromeSympathetic dysfunctionGanglion neuronsNav1.8 channelsSensory neuronsFunctional effectsChannel Nav1.7HypoexcitabilityNeurons
2004
Changes in the expression of tetrodotoxin‐sensitive sodium channels within dorsal root ganglia neurons in inflammatory pain
Black JA, Liu S, Tanaka M, Cummins TR, Waxman SG. Changes in the expression of tetrodotoxin‐sensitive sodium channels within dorsal root ganglia neurons in inflammatory pain. Pain 2004, 108: 237-247. PMID: 15030943, DOI: 10.1016/j.pain.2003.12.035.Peer-Reviewed Original ResearchMeSH KeywordsAnesthetics, LocalAnimalsBlotting, WesternCarrageenanCells, CulturedDisease Models, AnimalFunctional LateralityGanglia, SpinalGene Expression RegulationImmunohistochemistryIn Situ HybridizationInflammationMaleMembrane PotentialsNeuronsPainPatch-Clamp TechniquesRatsRats, Sprague-DawleyRNA, MessengerSodium ChannelsTetrodotoxinConceptsTTX-R currentsDorsal root gangliaDRG neuronsInflammatory painSodium channelsCarrageenan injectionProstaglandin E2TTX-R sodium channelsTetrodotoxin-sensitive sodium channelsDorsal root ganglion neuronsMultiple voltage-gated sodium channelsWhole-cell patch-clamp methodTTX-S sodium channelsTTX-R channelsTTX-S currentsSmall DRG neuronsInjection of carrageenanTTX-S channelsChronic inflammation resultsTetrodotoxin-resistant channelsVoltage-gated sodium channelsPatch-clamp methodUpregulation of mRNAAffected pawAcute administration