2008
A relaxed active site after exon ligation by the group I intron
Lipchock SV, Strobel SA. A relaxed active site after exon ligation by the group I intron. Proceedings Of The National Academy Of Sciences Of The United States Of America 2008, 105: 5699-5704. PMID: 18408159, PMCID: PMC2311373, DOI: 10.1073/pnas.0712016105.Peer-Reviewed Original ResearchConceptsActive siteMetal ionsRelaxed active siteActive site metal ionScissile phosphateDirect metal coordinationHydrogen bonding contactsMetal coordinationBonding contactsTransition stateCrystal structureThermodynamic measurementsIonsGround stateStructureCoordinationStructural observationsTertiary interactionsIntron releaseExon ligationGroup I intronPhosphateComplexesReactionSecond step
2000
A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme11Edited by D. Draper
Strauss-Soukup J, Strobel S. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme11Edited by D. Draper. Journal Of Molecular Biology 2000, 302: 339-358. PMID: 10970738, DOI: 10.1006/jmbi.2000.4056.Peer-Reviewed Original Research[6] Chemical probing of RNA by nucleotide analog interference mapping
Ryder S, Ortoleva-Donnelly L, Kosek A, Strobel S. [6] Chemical probing of RNA by nucleotide analog interference mapping. Methods In Enzymology 2000, 317: 92-109. PMID: 10829274, DOI: 10.1016/s0076-6879(00)17008-9.Peer-Reviewed Original Research
1999
An important base triple anchors the substrate helix recognition surface within the Tetrahymena ribozyme active site
Szewczak A, Ortoleva-Donnelly L, Zivarts M, Oyelere A, Kazantsev A, Strobel S. An important base triple anchors the substrate helix recognition surface within the Tetrahymena ribozyme active site. Proceedings Of The National Academy Of Sciences Of The United States Of America 1999, 96: 11183-11188. PMID: 10500151, PMCID: PMC18008, DOI: 10.1073/pnas.96.20.11183.Peer-Reviewed Original ResearchConceptsHelix dockingBase triplesRecognition surfaceGroup I intronActive siteNetwork of interactionsTetrahymena group IP3 helixStructural biologySubstrate bindingI intronCatalytic RNAProduct bindingSuppression analysisFunctional importanceRNA foldingRNA constructsSubstrate helixBiochemical evidenceMutant ribozymesRibozyme active siteSubstantial rearrangementHelixCrystallographic modelRibozymeA hydrogen-bonding triad stabilizes the chemical transition state of a group I ribozyme
Strobel S, Ortoleva-Donnelly L. A hydrogen-bonding triad stabilizes the chemical transition state of a group I ribozyme. Cell Chemical Biology 1999, 6: 153-165. PMID: 10074469, DOI: 10.1016/s1074-5521(99)89007-3.Peer-Reviewed Original Research
1998
A minor groove RNA triple helix within the catalytic core of a group I intron
Szewczak A, Ortoleva-Donnelly L, Ryder S, Moncoeur E, Strobel S. A minor groove RNA triple helix within the catalytic core of a group I intron. Nature Structural & Molecular Biology 1998, 5: 1037-1042. PMID: 9846872, DOI: 10.1038/4146.Peer-Reviewed Original ResearchIdentifying RNA Minor Groove Tertiary Contacts by Nucleotide Analogue Interference Mapping with N 2-Methylguanosine †
Ortoleva-Donnelly L, Kronman M, Strobel S. Identifying RNA Minor Groove Tertiary Contacts by Nucleotide Analogue Interference Mapping with N 2-Methylguanosine †. Biochemistry 1998, 37: 12933-12942. PMID: 9737873, DOI: 10.1021/bi980723j.Peer-Reviewed Original ResearchThe chemical basis of adenosine conservation throughout the Tetrahymena ribozyme.
Ortoleva-Donnelly L, Szewczak A, Gutell R, Strobel S. The chemical basis of adenosine conservation throughout the Tetrahymena ribozyme. RNA 1998, 4: 498-519. PMID: 9582093, PMCID: PMC1369635, DOI: 10.1017/s1355838298980086.Peer-Reviewed Original Research
1997
Defining the chemical groups essential for Tetrahymena group I intron function by nucleotide analog interference mapping
Strobel S, Shetty K. Defining the chemical groups essential for Tetrahymena group I intron function by nucleotide analog interference mapping. Proceedings Of The National Academy Of Sciences Of The United States Of America 1997, 94: 2903-2908. PMID: 9096319, PMCID: PMC20295, DOI: 10.1073/pnas.94.7.2903.Peer-Reviewed Original Research
1996
Exocyclic Amine of the Conserved G·U Pair at the Cleavage Site of the Tetrahymena Ribozyme Contributes to 5‘-Splice Site Selection and Transition State Stabilization †
Strobel S, Cech T. Exocyclic Amine of the Conserved G·U Pair at the Cleavage Site of the Tetrahymena Ribozyme Contributes to 5‘-Splice Site Selection and Transition State Stabilization †. Biochemistry 1996, 35: 1201-1211. PMID: 8573575, DOI: 10.1021/bi952244f.Peer-Reviewed Original Research
1995
Minor Groove Recognition of the Conserved G⋅U Pair at the Tetrahymena ribozyme Reaction Site
Strobel S, Cech T. Minor Groove Recognition of the Conserved G⋅U Pair at the Tetrahymena ribozyme Reaction Site. Science 1995, 267: 675-679. PMID: 7839142, DOI: 10.1126/science.7839142.Peer-Reviewed Original Research
1993
Tertiary interactions with the internal guide sequence mediate docking of the P1 helix into the catalytic core of the Tetrahymena ribozyme.
Strobel S, Cech T. Tertiary interactions with the internal guide sequence mediate docking of the P1 helix into the catalytic core of the Tetrahymena ribozyme. Biochemistry 1993, 32: 13593-604. PMID: 7504953, DOI: 10.1021/bi00212a027.Peer-Reviewed Original Research