2024
Catalytic Enantioselective Sulfoxidation of Functionalized Thioethers Mediated by Aspartic Acid-Containing Peptides
Huth S, Tampellini N, Guerrero M, Miller S. Catalytic Enantioselective Sulfoxidation of Functionalized Thioethers Mediated by Aspartic Acid-Containing Peptides. Organic Letters 2024, 26: 6872-6877. PMID: 39102356, PMCID: PMC11329351, DOI: 10.1021/acs.orglett.4c02452.Peer-Reviewed Original ResearchConceptsEnantioselective oxidation of sulfidesModel of transition stateLevels of enantioinductionOxidation of sulfidesChiral sulfoxidesPeptide catalystsTransition stateEnantioselective sulfoxidationAspartic acid-containing peptidesSulfoxideThioethersEnantioinductionCatalystMoietySubstrateHydrogenSulfideExperimental evidenceScaffold‐Oriented Asymmetric Catalysis: Conformational Modulation of Transition State Multivalency during a Catalyst‐Controlled Assembly of a Pharmaceutically Relevant Atropisomer
Tampellini N, Mercado B, Miller S. Scaffold‐Oriented Asymmetric Catalysis: Conformational Modulation of Transition State Multivalency during a Catalyst‐Controlled Assembly of a Pharmaceutically Relevant Atropisomer. Chemistry - A European Journal 2024, 30: e202401109. PMID: 38507249, PMCID: PMC11132932, DOI: 10.1002/chem.202401109.Peer-Reviewed Original ResearchHydrogen bond donorAtroposelective synthesisAsymmetric catalysisGuanidine catalystCatalyst controlChiral axisBond donorNoncovalent interactionsConformational modulationCatalystFolded stateN-capAtroposelectivityAtropisomersSuperbasesPhenylCatalysisQuinazolinedionesMultivalencyBTK inhibitorsMechanistic frameworkStructureEnantioselective Sulfonimidamide Acylation via a Cinchona Alkaloid-Catalyzed Desymmetrization: Scope, Data Science, and Mechanistic Investigation
Haas B, Lim N, Jermaks J, Gaster E, Guo M, Malig T, Werth J, Zhang H, Toste F, Gosselin F, Miller S, Sigman M. Enantioselective Sulfonimidamide Acylation via a Cinchona Alkaloid-Catalyzed Desymmetrization: Scope, Data Science, and Mechanistic Investigation. Journal Of The American Chemical Society 2024, 146: 8536-8546. PMID: 38480482, PMCID: PMC10990064, DOI: 10.1021/jacs.4c00374.Peer-Reviewed Original ResearchConceptsDensity functional theoryStructure-activity relationshipBis-acylationExcellent yieldsAsymmetric acylationTetrahedral intermediateSynthetic chemistryFunctional theoryMechanistic investigationsReaction kineticsMechanistic studiesSulfonimidamidesDesymmetrizationEnantioselectivityStructural studiesCatalystAcylPharmacophoreCinchonaIntermediateReactionChemistryKineticsYield
2023
Data Science-Enabled Palladium-Catalyzed Enantioselective Aryl-Carbonylation of Sulfonimidamides
van Dijk L, Haas B, Lim N, Clagg K, Dotson J, Treacy S, Piechowicz K, Roytman V, Zhang H, Toste F, Miller S, Gosselin F, Sigman M. Data Science-Enabled Palladium-Catalyzed Enantioselective Aryl-Carbonylation of Sulfonimidamides. Journal Of The American Chemical Society 2023, 145: 20959-20967. PMID: 37656964, DOI: 10.1021/jacs.3c06674.Peer-Reviewed Original ResearchCross-coupling methodsHeteroaryl iodidesLigand descriptorsExcellent yieldsCoupling partnersChemical spaceMedicinal chemistrySulfonimidamidesAgrochemical discoveryVirtual libraryReaction optimizationOptimal conditionsEfficient strategyHeteroarylScience techniquesEnantioselectivityArylCatalystIodideReactionChemistryData science techniquesYieldDescriptorsDiverse set
2018
Divergent Control of Point and Axial Stereogenicity: Catalytic Enantioselective C−N Bond‐Forming Cross‐Coupling and Catalyst‐Controlled Atroposelective Cyclodehydration
Kwon Y, Chinn AJ, Kim B, Miller SJ. Divergent Control of Point and Axial Stereogenicity: Catalytic Enantioselective C−N Bond‐Forming Cross‐Coupling and Catalyst‐Controlled Atroposelective Cyclodehydration. Angewandte Chemie International Edition 2018, 57: 6251-6255. PMID: 29637680, PMCID: PMC5964046, DOI: 10.1002/anie.201802963.Peer-Reviewed Original ResearchConceptsAxis of chiralityCopper complexesChiral phosphoric acid catalystChiral copper complexesPhosphoric acid catalystStereogenic carbon centersMultiple stereoisomersCatalytic approachCatalytic reactionStereogenic elementsAcid catalystRemote desymmetrizationCatalyst controlAxial chiralityCarbon centerStereogenic centersCross couplingHigh diastereoselectivityPhosphoric acidCatalystChiralityStereoisomersCyclodehydrationStereogenicityReactionDivergent Stereoselectivity in Phosphothreonine (pThr)-Catalyzed Reductive Aminations of 3‑Amidocyclohexanones
Shugrue C, Featherston AL, Lackner RM, Lin A, Miller SJ. Divergent Stereoselectivity in Phosphothreonine (pThr)-Catalyzed Reductive Aminations of 3‑Amidocyclohexanones. The Journal Of Organic Chemistry 2018, 83: 4491-4504. PMID: 29547285, PMCID: PMC5963540, DOI: 10.1021/acs.joc.8b00207.Peer-Reviewed Original ResearchConceptsReductive aminationNumerous reactive sitesPeptide catalystsParallel kinetic resolutionDFT calculationsNMR studiesReactive sitesDivergent selectivitySecondary interactionsNatural productsKinetic resolutionCatalystAminationDivergent stereoselectivitiesCatalyzed Reductive AminationPeptide sequencesSelectivityComplex substratesSubstrateDiastereoselectivityStereoselectivityProductsReactivityPhosphopeptidesPhosphothreonineDisulfide-Bridged Peptides That Mediate Enantioselective Cycloadditions through Thiyl Radical Catalysis
Ryss JM, Turek AK, Miller SJ. Disulfide-Bridged Peptides That Mediate Enantioselective Cycloadditions through Thiyl Radical Catalysis. Organic Letters 2018, 20: 1621-1625. PMID: 29504763, PMCID: PMC5963541, DOI: 10.1021/acs.orglett.8b00364.Peer-Reviewed Original ResearchParameterization and Analysis of Peptide-Based Catalysts for the Atroposelective Bromination of 3‑Arylquinazolin-4(3H)‑ones
Crawford JM, Stone EA, Metrano AJ, Miller SJ, Sigman MS. Parameterization and Analysis of Peptide-Based Catalysts for the Atroposelective Bromination of 3‑Arylquinazolin-4(3H)‑ones. Journal Of The American Chemical Society 2018, 140: 868-871. PMID: 29300461, PMCID: PMC5817992, DOI: 10.1021/jacs.7b11303.Peer-Reviewed Original Research
2017
Enantioselective Intermolecular C–O Bond Formation in the Desymmetrization of Diarylmethines Employing a Guanidinylated Peptide-Based Catalyst
Chinn AJ, Kim B, Kwon Y, Miller SJ. Enantioselective Intermolecular C–O Bond Formation in the Desymmetrization of Diarylmethines Employing a Guanidinylated Peptide-Based Catalyst. Journal Of The American Chemical Society 2017, 139: 18107-18114. PMID: 29116792, PMCID: PMC5738244, DOI: 10.1021/jacs.7b11197.Peer-Reviewed Original ResearchConceptsComplex molecular settingsO bond formationPeptide-based ligandsCross-coupling reactionsPhenolic hydroxyl groupsIntermolecular CuIntermolecular CChemoselective reactionTBu groupBond formationAppreciable selectivityReactive sitesPhenolic nucleophilesHydroxyl groupsSteric perturbationsMaximum enantioselectivitySecond reactive siteMolecular settingNucleophilesDesymmetrizationUncommon levelReactionSubstrateCatalystChemistryDesymmetrization of Diarylmethylamido Bis(phenols) through Peptide-Catalyzed Bromination: Enantiodivergence as a Consequence of a 2 amu Alteration at an Achiral Residue within the Catalyst
Hurtley AE, Stone EA, Metrano AJ, Miller SJ. Desymmetrization of Diarylmethylamido Bis(phenols) through Peptide-Catalyzed Bromination: Enantiodivergence as a Consequence of a 2 amu Alteration at an Achiral Residue within the Catalyst. The Journal Of Organic Chemistry 2017, 82: 11326-11336. PMID: 29020446, PMCID: PMC5738245, DOI: 10.1021/acs.joc.7b02339.Peer-Reviewed Original ResearchApplications of Nonenzymatic Catalysts to the Alteration of Natural Products
Shugrue CR, Miller SJ. Applications of Nonenzymatic Catalysts to the Alteration of Natural Products. Chemical Reviews 2017, 117: 11894-11951. PMID: 28580785, PMCID: PMC5742423, DOI: 10.1021/acs.chemrev.7b00022.Peer-Reviewed Original ResearchConceptsNatural productsNonenzymatic catalystsComplex molecular scaffoldsComplex natural productsH bond functionalizationC bond formationNatural product scaffoldsLate-stage functionalizationNatural product derivativesSynthesis of analoguesChemical functionalityMedicinal chemistryBond functionalizationElectrophilic reagentsOlefin functionalizationSelectivity challengesBiological activity assaysBond formationEnzymatic catalystsProduct derivativesMolecular scaffoldsCatalystComplex moleculesChemical remodelingSmall moleculesA bottom up approach towards artificial oxygenases by combining iron coordination complexes and peptides
Cussó O, Giuliano MW, Ribas X, Miller SJ, Costas M. A bottom up approach towards artificial oxygenases by combining iron coordination complexes and peptides. Chemical Science 2017, 8: 3660-3667. PMID: 29270284, PMCID: PMC5734052, DOI: 10.1039/c7sc00099e.Peer-Reviewed Original ResearchIron centerHigh enantioselectivityIron coordination complexesAqueous hydrogen peroxideSecond coordination sphereΒ-turn structureShort reaction timesTerminal carboxylic acidSupramolecular catalystsCoordination complexesSupramolecular systemsClasses of substratesAsymmetric catalysisCoordination sphereAsymmetric epoxidationExcellent yieldsCarboxylic acidsCombination of peptidesActivation stepHydrogen peroxideReaction timeEpoxidationEnantioselectivityPeptidesCatalyst
2016
Diversity of Secondary Structure in Catalytic Peptides with β‑Turn-Biased Sequences
Metrano AJ, Abascal NC, Mercado BQ, Paulson EK, Hurtley AE, Miller SJ. Diversity of Secondary Structure in Catalytic Peptides with β‑Turn-Biased Sequences. Journal Of The American Chemical Society 2016, 139: 492-516. PMID: 28029251, PMCID: PMC5312972, DOI: 10.1021/jacs.6b11348.Peer-Reviewed Original ResearchConceptsPeptide-based catalystsSolid-state structural featuresΒ-turn secondary structureX-ray crystal structureProton chemical shiftsCorresponding solution structuresSymmetry-independent moleculesX-ray crystallographyAccessible transition stateGround state conformationSeries of tetrapeptidesChemical shiftsDifferent peptide sequencesEnantioselective reactionsSecondary structureCatalytic activityBromination reactionSame unit cellCatalytic peptidesTransition stateCrystal structureCatalystState conformationComputational studyConformational equilibriumAspartyl Oxidation Catalysts That Dial In Functional Group Selectivity, along with Regio- and Stereoselectivity
Alford JS, Abascal NC, Shugrue CR, Colvin SM, Romney DK, Miller SJ. Aspartyl Oxidation Catalysts That Dial In Functional Group Selectivity, along with Regio- and Stereoselectivity. ACS Central Science 2016, 2: 733-739. PMID: 27800556, PMCID: PMC5084076, DOI: 10.1021/acscentsci.6b00237.Peer-Reviewed Original ResearchBaeyer-Villiger oxidationAlkene epoxidationSmall-molecule catalystsModes of reactivityOrthogonal chemical reactivityFunctional group selectivityCarboxylic acid groupsCatalytic functional groupsLate-stage diversificationDifferent chemical reactionsActive site carboxylatesMacromolecular architecturesPolyfunctional moleculesChemical reactivityChemical selectivityElectrophilic oxidantSelective reactionGroup selectivityAmide bondAcid groupsFunctional groupsActive siteCatalytic mechanismChemical reactionsCatalystSolution Structures and Molecular Associations of a Peptide-Based Catalyst for the Stereoselective Baeyer–Villiger Oxidation
Abascal NC, Miller SJ. Solution Structures and Molecular Associations of a Peptide-Based Catalyst for the Stereoselective Baeyer–Villiger Oxidation. Organic Letters 2016, 18: 4646-4649. PMID: 27588823, PMCID: PMC5130343, DOI: 10.1021/acs.orglett.6b02282.Peer-Reviewed Original ResearchConceptsBaeyer-Villiger oxidationPeptide-based catalystsStereoselective Baeyer–Villiger oxidationsCatalytic reactionStereoselective catalystsEffect of additivesSolution conformationCatalystMolecular associationSubstrate-specific interactionsUnique structureSolution structureOxidationStructural analysisAdvantageous featuresSelectivityExperimental observationsPeptidesConformationStructureAdditivesReaction
2015
Enantioselective Synthesis of 3‑Arylquinazolin-4(3H)‑ones via Peptide-Catalyzed Atroposelective Bromination
Diener ME, Metrano AJ, Kusano S, Miller SJ. Enantioselective Synthesis of 3‑Arylquinazolin-4(3H)‑ones via Peptide-Catalyzed Atroposelective Bromination. Journal Of The American Chemical Society 2015, 137: 12369-12377. PMID: 26343278, PMCID: PMC5134330, DOI: 10.1021/jacs.5b07726.Peer-Reviewed Original ResearchConceptsAtroposelective brominationDensity functional theory calculationsBroad substrate scopeX-ray crystallographyΒ-turn peptideFunctional theory calculationsCross-coupling sequenceFree catalystsSubstrate scopeAmination procedureStereochemical informationEnantioselective synthesisTheory calculationsHigh enantioselectivityRotational barriersMechanistic studiesSubsequent transformationBrominationMono-orthoProduct of interestCatalystEnantioinductionCrystallographyEnantioselectivityIsomersSite-Selective Reactions with Peptide-Based Catalysts
Giuliano MW, Miller SJ. Site-Selective Reactions with Peptide-Based Catalysts. 2015, 372: 157-201. PMID: 26307403, DOI: 10.1007/128_2015_653.Peer-Reviewed Original ResearchPhosphothreonine as a Catalytic Residue in Peptide‐Mediated Asymmetric Transfer Hydrogenations of 8‐Aminoquinolines
Shugrue CR, Miller SJ. Phosphothreonine as a Catalytic Residue in Peptide‐Mediated Asymmetric Transfer Hydrogenations of 8‐Aminoquinolines. Angewandte Chemie International Edition 2015, 54: 11173-11176. PMID: 26246129, PMCID: PMC4628550, DOI: 10.1002/anie.201505898.Peer-Reviewed Original ResearchConceptsTransfer hydrogenationChiral phosphoric acid catalystHydrogen bonding interactionsPhosphoric acid catalystAsymmetric transfer hydrogenationEnantioselective transfer hydrogenationAsymmetric catalystsAcid catalystStrong complexationNMR studiesSubstrate classesCatalystHydrogenationNew classCatalytic residuesPeptidesComplexationEnantioselectivityQuinolinePhosphopeptidesSubstrateResiduesA Synergistic Combinatorial and Chiroptical Study of Peptide Catalysts for Asymmetric Baeyer–Villiger Oxidation
Giuliano MW, Lin C, Romney DK, Miller SJ, Anslyn EV. A Synergistic Combinatorial and Chiroptical Study of Peptide Catalysts for Asymmetric Baeyer–Villiger Oxidation. Advanced Synthesis & Catalysis 2015, 357: 2301-2309. PMID: 26543444, PMCID: PMC4629862, DOI: 10.1002/adsc.201500230.Peer-Reviewed Original ResearchAsymmetric Baeyer–Villiger oxidationBaeyer-Villiger oxidationSolution-phase reactionsBaeyer-Villiger monooxygenasesPeptide catalystsCatalyst discoveryChiroptical studiesSpeed of analysisCatalyst performanceFocused libraryLactone productsAsymmetric inductionAbsolute configurationCombinatorial screeningOxidationCatalystDistinct parallelsProductsReactionHPLCAlcoholMonooxygenasesStructure Diversification of Vancomycin through Peptide-Catalyzed, Site-Selective Lipidation: A Catalysis-Based Approach To Combat Glycopeptide-Resistant Pathogens
Yoganathan S, Miller SJ. Structure Diversification of Vancomycin through Peptide-Catalyzed, Site-Selective Lipidation: A Catalysis-Based Approach To Combat Glycopeptide-Resistant Pathogens. Journal Of Medicinal Chemistry 2015, 58: 2367-2377. PMID: 25671771, PMCID: PMC4364393, DOI: 10.1021/jm501872s.Peer-Reviewed Original ResearchConceptsStructure diversificationLipid chain lengthStructure-activity relationship studiesPeptide catalystsCatalytic approachAliphatic hydroxylDerivatization sitesDerivatives 9aGlycopeptide-resistant pathogensNovel antibiotic leadsChain lengthLipid chainsRelationship studiesAntibiotic leadsCatalystCatalysisAntibiotic-resistant infectionsHydroxylHereinScaffoldsBioactivityChainSpectraLipidationIncorporation