2020
Dual role of reactive oxygen species in autophagy and apoptosis induced by compound PN in prostate cancer cells
Choi H, Kim K, Park K, Kim S, Park S, Yu S, Kim Y, Kim D, Chung K, Ahn S. Dual role of reactive oxygen species in autophagy and apoptosis induced by compound PN in prostate cancer cells. Molecular & Cellular Toxicology 2020, 17: 41-50. DOI: 10.1007/s13273-020-00107-4.Peer-Reviewed Original ResearchMitochondrial reactive oxygen speciesReactive oxygen speciesCell deathMolecular mechanismsProstate cancer cellsPC-3 cellsCell survivalAnti-cancer activityROS productionApoptotic cell deathCancer cellsOxygen speciesROS-dependent mannerInduction of apoptosisProstate cancer PC-3 cellsHuman prostate cancer cellsAcceleration of apoptosisCancer PC-3 cellsInhibition of autophagyProduction of intracellularIntracellular ROS scavengerProstate cancer treatmentExpression of apoptosisAutophagy inductionWestern blot analysis
2017
Salinomycin Induces Reactive Oxygen Species and Apoptosis in Aggressive Breast Cancer Cells as Mediated with Regulation of Autophagy
Kim K, Park K, Kim S, Yu S, Lee D, Kim Y, Noh K, YEUL J, Seo Y, Ahn S. Salinomycin Induces Reactive Oxygen Species and Apoptosis in Aggressive Breast Cancer Cells as Mediated with Regulation of Autophagy. Anticancer Research 2017, 37: 1747-1758. PMID: 28373437, DOI: 10.21873/anticanres.11507.Peer-Reviewed Original ResearchConceptsMDA-MB-231 cellsAggressive breast cancer cellsBreast cancer cellsCancer cellsReactive oxygen speciesBreast cancer cell linesROS productionMitochondrial membrane potentialScavenger of ROSInduces reactive oxygen speciesCancer cell linesCaspase-3/9 activityPropidium iodide stainingMCF-7 cellsOxygen speciesAcceleration of apoptosisAcridine orange stainingAutophagy inhibitionMonocarboxylic ionophoreChemotherapeutic drugsCancer treatmentMitochondrial dysfunctionIodide stainingRegulation of autophagyUnderlying mechanism