2023
Three-Year Safety, Tolerability, and Health-Related Quality of Life Outcomes of Adjuvant Osimertinib in Patients With Resected Stage IB to IIIA EGFR-Mutated NSCLC: Updated Analysis From the Phase 3 ADAURA Trial
John T, Grohé C, Goldman J, Shepherd F, de Marinis F, Kato T, Wang Q, Su W, Choi J, Sriuranpong V, Melotti B, Fidler M, Chen J, Albayaty M, Stachowiak M, Taggart S, Wu Y, Tsuboi M, Herbst R, Majem M. Three-Year Safety, Tolerability, and Health-Related Quality of Life Outcomes of Adjuvant Osimertinib in Patients With Resected Stage IB to IIIA EGFR-Mutated NSCLC: Updated Analysis From the Phase 3 ADAURA Trial. Journal Of Thoracic Oncology 2023, 18: 1209-1221. PMID: 37236398, DOI: 10.1016/j.jtho.2023.05.015.Peer-Reviewed Original ResearchMeSH KeywordsAniline CompoundsCarcinoma, Non-Small-Cell LungErbB ReceptorsHumansLung NeoplasmsMutationProtein Kinase InhibitorsQuality of LifeConceptsThree-year safetyAdverse eventsAdjuvant osimertinibStage IBWeek 12Treatment completionCommon adverse eventsMost adverse eventsResected stage IBSignificant efficacy benefitDisease-free survivalNew safety signalsSF-36 surveyHealth-related qualityInterstitial lung diseaseMental component summaryTotal exposure durationADAURA trialWeek 24Component summaryEfficacy benefitsOsimertinib treatmentSF-36Lung diseaseSafety signals
2022
Circulating Tumor DNA Kinetics Predict Progression-Free and Overall Survival in EGFR TKI–Treated Patients with EGFR-Mutant NSCLC (SWOG S1403)
Mack PC, Miao J, Redman MW, Moon J, Goldberg SB, Herbst RS, Melnick MA, Walther Z, Hirsch FR, Politi K, Kelly K, Gandara DR. Circulating Tumor DNA Kinetics Predict Progression-Free and Overall Survival in EGFR TKI–Treated Patients with EGFR-Mutant NSCLC (SWOG S1403). Clinical Cancer Research 2022, 28: 3752-3760. PMID: 35713632, PMCID: PMC9444942, DOI: 10.1158/1078-0432.ccr-22-0741.Peer-Reviewed Original ResearchMeSH KeywordsCarcinoma, Non-Small-Cell LungCirculating Tumor DNADisease-Free SurvivalErbB ReceptorsHumansLung NeoplasmsMutationProtein Kinase InhibitorsConceptsProgression-free survivalOverall survivalEGFR mutationsNon-small cell lung cancerCycle 3 day 1Median progression-free survivalMedian overall survivalRisk of progressionCell lung cancerPresence of brainEGFR-mutant NSCLCBaseline ctDNAM1b stageProgression-FreeRECIST responseSerial plasmaLiver metastasesDecreased riskEGFR-TKILung cancerComplete clearanceLong-term benefitsClinical trialsTreatment outcomesPlasma clearance
2020
Osimertinib in Resected EGFR-Mutated Non–Small-Cell Lung Cancer
Wu YL, Tsuboi M, He J, John T, Grohe C, Majem M, Goldman JW, Laktionov K, Kim SW, Kato T, Vu HV, Lu S, Lee KY, Akewanlop C, Yu CJ, de Marinis F, Bonanno L, Domine M, Shepherd FA, Zeng L, Hodge R, Atasoy A, Rukazenkov Y, Herbst RS. Osimertinib in Resected EGFR-Mutated Non–Small-Cell Lung Cancer. New England Journal Of Medicine 2020, 383: 1711-1723. PMID: 32955177, DOI: 10.1056/nejmoa2027071.Peer-Reviewed Original ResearchMeSH KeywordsAcrylamidesAdultAgedAged, 80 and overAniline CompoundsAntineoplastic AgentsCarcinoma, Non-Small-Cell LungChemotherapy, AdjuvantDisease-Free SurvivalDouble-Blind MethodErbB ReceptorsFemaleHumansLung NeoplasmsLymphatic MetastasisMaleMiddle AgedMutationNeoplasm Recurrence, LocalNeoplasm StagingPneumonectomyProtein Kinase InhibitorsConceptsDisease-free survivalMutation-positive NSCLCIIIA diseasePlacebo groupOsimertinib groupStage IBLung cancerUntreated epidermal growth factor receptorNon-small cell lung cancerOverall populationStage IIEnd pointCentral nervous system diseaseSafety of osimertinibPrimary end pointSecondary end pointsPhase 3 trialOverall survival dataCell lung cancerNew safety concernsNervous system diseasesEpidermal growth factor receptorGrowth factor receptorAdjuvant therapyOverall survival
2019
Larotrectinib in NTRK-Rearranged Solid Tumors
Wilson FH, Herbst RS. Larotrectinib in NTRK-Rearranged Solid Tumors. Biochemistry 2019, 58: 1555-1557. PMID: 30865435, PMCID: PMC7356829, DOI: 10.1021/acs.biochem.9b00126.Peer-Reviewed Original ResearchThe Combination of MEK Inhibitor With Immunomodulatory Antibodies Targeting Programmed Death 1 and Programmed Death Ligand 1 Results in Prolonged Survival in Kras/p53-Driven Lung Cancer
Lee JW, Zhang Y, Eoh KJ, Sharma R, Sanmamed MF, Wu J, Choi J, Park HS, Iwasaki A, Kaftan E, Chen L, Papadimitrakopoulou V, Herbst RS, Koo JS. The Combination of MEK Inhibitor With Immunomodulatory Antibodies Targeting Programmed Death 1 and Programmed Death Ligand 1 Results in Prolonged Survival in Kras/p53-Driven Lung Cancer. Journal Of Thoracic Oncology 2019, 14: 1046-1060. PMID: 30771521, PMCID: PMC6542636, DOI: 10.1016/j.jtho.2019.02.004.Peer-Reviewed Original ResearchMeSH KeywordsAdenocarcinoma of LungAnimalsAntineoplastic Agents, ImmunologicalAntineoplastic Combined Chemotherapy ProtocolsB7-H1 AntigenDrug SynergismFemaleLung NeoplasmsMAP Kinase Kinase KinasesMiceMice, KnockoutMice, TransgenicMyeloid-Derived Suppressor CellsProgrammed Cell Death 1 ReceptorProtein Kinase InhibitorsProto-Oncogene Proteins p21(ras)PyridonesPyrimidinonesSurvival AnalysisTumor Suppressor Protein p53ConceptsImmune cell populationsLung tumorsMEK inhibitorsDeath-1Survival outcomesLung cancerL1 mAbsTumor-infiltrating immune cell populationsTumor-infiltrating immune cellsCell death ligand 1Flow cytometryLung cancer mouse modelAdenoviral Cre recombinaseAutochthonous lung tumorsImmunomodulatory monoclonal antibodiesTumor-infiltrating CD8PD-L1 expressionSingle-agent therapyTumor-bearing lungsDeath ligand 1Tumor-free miceLung cancer modelCombinatorial antitumor effectCancer mouse modelCell populations
2018
Treatment of Advanced Non–Small Cell Lung Cancer in 2018
Doroshow DB, Herbst RS. Treatment of Advanced Non–Small Cell Lung Cancer in 2018. JAMA Oncology 2018, 4: 569-570. PMID: 29494728, DOI: 10.1001/jamaoncol.2017.5190.Peer-Reviewed Original ResearchClinical and Molecular Characteristics Associated With Survival Among Patients Treated With Checkpoint Inhibitors for Advanced Non–Small Cell Lung Carcinoma: A Systematic Review and Meta-analysis
Lee CK, Man J, Lord S, Cooper W, Links M, Gebski V, Herbst RS, Gralla RJ, Mok T, Yang JC. Clinical and Molecular Characteristics Associated With Survival Among Patients Treated With Checkpoint Inhibitors for Advanced Non–Small Cell Lung Carcinoma: A Systematic Review and Meta-analysis. JAMA Oncology 2018, 4: 210-216. PMID: 29270615, PMCID: PMC5838598, DOI: 10.1001/jamaoncol.2017.4427.Peer-Reviewed Original ResearchConceptsNon-small cell lung carcinomaAdvanced non-small cell lung carcinomaSecond-line therapyCheckpoint inhibitorsOverall survivalCell lung carcinomaWild-type subgroupClinicopathological characteristicsHazard ratioClinical trialsLung carcinomaMutant subgroupSystematic reviewKRAS wild-type subgroupStandard second-line therapyKRAS mutant subgroupRelative treatment benefitOverall survival benefitCochrane Central RegisterType of chemotherapyProlonged overall survivalProlongs overall survivalEGFR-mutant tumorsPatients' clinicopathological characteristicsRandomized clinical trials
2017
Stress hormones promote EGFR inhibitor resistance in NSCLC: Implications for combinations with β-blockers
Nilsson MB, Sun H, Diao L, Tong P, Liu D, Li L, Fan Y, Poteete A, Lim SO, Howells K, Haddad V, Gomez D, Tran H, Pena GA, Sequist LV, Yang JC, Wang J, Kim ES, Herbst R, Lee JJ, Hong WK, Wistuba I, Hung MC, Sood AK, Heymach JV. Stress hormones promote EGFR inhibitor resistance in NSCLC: Implications for combinations with β-blockers. Science Translational Medicine 2017, 9 PMID: 29118262, PMCID: PMC5870120, DOI: 10.1126/scitranslmed.aao4307.Peer-Reviewed Original ResearchMeSH KeywordsAdrenergic beta-AntagonistsAfatinibAMP-Activated Protein Kinase KinasesCarcinoma, Non-Small-Cell LungCell Line, TumorCyclic AMP Response Element-Binding ProteinDrug Resistance, NeoplasmEpinephrineErbB ReceptorsHumansInterleukin-6Lung NeoplasmsMutationNorepinephrineProtein Kinase CProtein Kinase InhibitorsProtein Serine-Threonine KinasesQuinazolinesReceptors, Adrenergic, betaSignal TransductionXenograft Model Antitumor AssaysConceptsNon-small cell lung cancerEGFR inhibitor resistanceΒ-blockersInhibitor resistanceStress hormonesLiver kinase B1Epidermal growth factor receptor tyrosine kinase inhibitor resistanceLower IL-6 concentrationsΒ-blocker useIL-6 concentrationsIL-6 inhibitionCell lung cancerTyrosine kinase inhibitor resistanceEGFR-TKI resistanceInterleukin-6 expressionKinase inhibitor resistanceChronic stress hormonesNSCLC patientsEGFR-TKIIL-6Lung cancerAR activationWorse outcomesNSCLC cellsTKI resistanceThe HGF/c-MET Pathway Is a Driver and Biomarker of VEGFR-inhibitor Resistance and Vascular Remodeling in Non–Small Cell Lung Cancer
Cascone T, Xu L, Lin HY, Liu W, Tran HT, Liu Y, Howells K, Haddad V, Hanrahan E, Nilsson MB, Cortez MA, Giri U, Kadara H, Saigal B, Park YY, Peng W, Lee JS, Ryan AJ, Jüergensmeier JM, Herbst RS, Wang J, Langley RR, Wistuba II, Lee JJ, Heymach JV. The HGF/c-MET Pathway Is a Driver and Biomarker of VEGFR-inhibitor Resistance and Vascular Remodeling in Non–Small Cell Lung Cancer. Clinical Cancer Research 2017, 23: 5489-5501. PMID: 28559461, PMCID: PMC5600821, DOI: 10.1158/1078-0432.ccr-16-3216.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCarcinoma, Non-Small-Cell LungCell Line, TumorClinical Trials, Phase II as TopicClinical Trials, Phase III as TopicDisease Models, AnimalDrug Resistance, NeoplasmGene Expression ProfilingHepatocyte Growth FactorHumansHypoxiaKaplan-Meier EstimateLung NeoplasmsMaleMiceMolecular Targeted TherapyMulticenter Studies as TopicNeovascularization, PathologicPrognosisProtein Kinase InhibitorsProto-Oncogene Proteins c-metReceptors, Vascular Endothelial Growth FactorSignal TransductionXenograft Model Antitumor AssaysConceptsNon-small cell lung cancerHepatocyte growth factorC-MetHGF/c-Met pathwayHuman non-small cell lung cancerResistance of NSCLCAngiogenic factor levelsHGF plasma levelsCancer cellsTumor microvascular densityCell lung cancerEffect of therapyTortuous blood vesselsTumor vascular bedC-Met pathwayTyrosine kinase inhibitorsTumor-associated stromaClin Cancer ResHuman lung adenocarcinomaMurine xenograft modelVEGFR-TKIClinical outcomesLung cancerPlasma levelsMicrovascular density
2016
The International Association for the Study of Lung Cancer Consensus Statement on Optimizing Management of EGFR Mutation–Positive Non–Small Cell Lung Cancer: Status in 2016
Tan DS, Yom SS, Tsao MS, Pass HI, Kelly K, Peled N, Yung RC, Wistuba II, Yatabe Y, Unger M, Mack PC, Wynes MW, Mitsudomi T, Weder W, Yankelevitz D, Herbst RS, Gandara DR, Carbone DP, Bunn PA, Mok TS, Hirsch FR. The International Association for the Study of Lung Cancer Consensus Statement on Optimizing Management of EGFR Mutation–Positive Non–Small Cell Lung Cancer: Status in 2016. Journal Of Thoracic Oncology 2016, 11: 946-963. PMID: 27229180, DOI: 10.1016/j.jtho.2016.05.008.Peer-Reviewed Original ResearchMeSH KeywordsBrain NeoplasmsCarcinoma, Non-Small-Cell LungConsensusDrug Resistance, NeoplasmErbB ReceptorsHumansLung NeoplasmsMutationProtein Kinase InhibitorsConceptsNon-small cell lung cancerTyrosine kinase inhibitorsEGFR tyrosine kinase inhibitorsCell lung cancerLung cancerEpidermal growth factor receptor (EGFR) geneTreatment optionsConsensus statementEGFR-mutant non-small cell lung cancerEGFR Mutation-Positive NonFirst-line treatment optionSmall cell lung cancerThird-generation EGFR-TKI osimertinibCancer consensus statementLocal treatment optionsNew clinical algorithmEGFR-TKI osimertinibHigh response rateBrain metastasesRepeat biopsyClinical profileGrowth factor receptor geneClinical algorithmClinical guidelinesTreatment paradigmKDR Amplification Is Associated with VEGF-Induced Activation of the mTOR and Invasion Pathways but does not Predict Clinical Benefit to the VEGFR TKI Vandetanib
Nilsson MB, Giri U, Gudikote J, Tang X, Lu W, Tran H, Fan Y, Koo A, Diao L, Tong P, Wang J, Herbst R, Johnson BE, Ryan A, Webster A, Rowe P, Wistuba II, Heymach JV. KDR Amplification Is Associated with VEGF-Induced Activation of the mTOR and Invasion Pathways but does not Predict Clinical Benefit to the VEGFR TKI Vandetanib. Clinical Cancer Research 2016, 22: 1940-1950. PMID: 26578684, PMCID: PMC4834253, DOI: 10.1158/1078-0432.ccr-15-1994.Peer-Reviewed Original ResearchMeSH KeywordsCarcinoma, Non-Small-Cell LungCell Line, TumorCell MovementCell ProliferationHumansHypoxia-Inducible Factor 1, alpha SubunitLung NeoplasmsP38 Mitogen-Activated Protein KinasesPiperidinesProtein Kinase InhibitorsProto-Oncogene Proteins c-metQuinazolinesSignal TransductionTOR Serine-Threonine KinasesTreatment OutcomeVascular Endothelial Growth Factor AVascular Endothelial Growth Factor Receptor-2ConceptsNon-small cell lung cancerTyrosine kinase inhibitorsVEGFR tyrosine kinase inhibitorsNSCLC cell linesZODIAC studyClinical benefitLung cancerPlatinum-refractory non-small cell lung cancerAdvanced non-small cell lung cancerImproved progression-free survivalDifferent lung cancersObjective response rateProgression-free survivalVEGF pathway inhibitorsCell lung cancerArchival tumor samplesCell linesActivation of mTORVandetanib armOverall survivalNSCLC modelsNSCLC cellsPreclinical studiesPatientsVEGFR inhibition
2015
EGFR tyrosine kinase inhibitors in squamous cell lung cancer
Hirsch FR, Herbst RS, Gandara DR. EGFR tyrosine kinase inhibitors in squamous cell lung cancer. The Lancet Oncology 2015, 16: 872-873. PMID: 26156654, DOI: 10.1016/s1470-2045(15)00126-6.Peer-Reviewed Original ResearchAntineoplastic AgentsCarcinoma, Squamous CellFemaleHumansLung NeoplasmsMaleProtein Kinase InhibitorsQuinazolines
2013
Phase I–IIa study of BMS-690514, an EGFR, HER-2 and -4 and VEGFR-1 to -3 oral tyrosine kinase inhibitor, in patients with advanced or metastatic solid tumours
Soria JC, Baselga J, Hanna N, Laurie SA, Bahleda R, Felip E, Calvo E, Armand JP, Shepherd FA, Harbison CT, Berman D, Park JS, Zhang S, Vakkalagadda B, Kurland JF, Pathak AK, Herbst RS. Phase I–IIa study of BMS-690514, an EGFR, HER-2 and -4 and VEGFR-1 to -3 oral tyrosine kinase inhibitor, in patients with advanced or metastatic solid tumours. European Journal Of Cancer 2013, 49: 1815-1824. PMID: 23490650, DOI: 10.1016/j.ejca.2013.02.012.Peer-Reviewed Original ResearchMeSH KeywordsAdministration, OralAdultAgedArea Under CurveCarcinoma, Non-Small-Cell LungDiarrheaDose-Response Relationship, DrugDrug Resistance, NeoplasmErbB ReceptorsErlotinib HydrochlorideExanthemaFemaleHumansLung NeoplasmsMaleMetabolic Clearance RateMiddle AgedNeoplasm MetastasisNeoplasmsPiperidinesProtein Kinase InhibitorsPyrrolesQuinazolinesReceptor, ErbB-2Treatment OutcomeTriazinesVascular Endothelial Growth Factor Receptor-1Vascular Endothelial Growth Factor Receptor-3ConceptsIIa studyBMS-690514Growth factor receptorPhase IAdverse eventsEGFR mutationsHER-2Phase IIaFrequent treatment-related adverse eventsSolid tumorsTreatment-related adverse eventsOral tyrosine kinase inhibitorDisease controlVascular endothelial growth factor receptorManageable safety profileObjective response rateAdvanced solid tumorsFactor receptorMetastatic solid tumorsEndothelial growth factor receptorCell lung cancerTyrosine kinase inhibitorsInhibition of VEGFREpidermal growth factor receptorWild-type EGFRCaspase-Independent Cell Death Is Involved in the Negative Effect of EGF Receptor Inhibitors on Cisplatin in Non–Small Cell Lung Cancer Cells
Yamaguchi H, Hsu JL, Chen CT, Wang YN, Hsu MC, Chang SS, Du Y, Ko HW, Herbst R, Hung MC. Caspase-Independent Cell Death Is Involved in the Negative Effect of EGF Receptor Inhibitors on Cisplatin in Non–Small Cell Lung Cancer Cells. Clinical Cancer Research 2013, 19: 845-854. PMID: 23344263, PMCID: PMC3703145, DOI: 10.1158/1078-0432.ccr-12-2621.Peer-Reviewed Original ResearchMeSH KeywordsAntineoplastic Combined Chemotherapy ProtocolsCarcinoma, Non-Small-Cell LungCaspasesCell DeathCell Line, TumorCisplatinDrug Resistance, NeoplasmEpidermal Growth FactorErbB ReceptorsForkhead Box Protein O3Forkhead Transcription FactorsGefitinibHumansProtein Kinase InhibitorsQuinazolinesSignal TransductionConceptsCaspase-independent cell deathTyrosine kinase inhibitorsSuberoylanilide hydroxamic acidReactive oxygen speciesLung cancerCell deathEGFR cellsEffects of TKIsNon-small cell lung cancer cellsCaspase-dependent apoptotic cell deathCisplatin-induced reactive oxygen speciesReceptor tyrosine kinase inhibitorsInducer of ROSCell lung cancer cellsPlatinum-based chemotherapyEGF receptor tyrosine kinase inhibitorMultiple clinical trialsEfficacy of chemotherapyEfficacy of cisplatinEffect of cisplatinLung cancer cellsApoptotic cell deathWild-type EGFREGF receptor inhibitorClinical trialsAn Epithelial–Mesenchymal Transition Gene Signature Predicts Resistance to EGFR and PI3K Inhibitors and Identifies Axl as a Therapeutic Target for Overcoming EGFR Inhibitor Resistance
Byers LA, Diao L, Wang J, Saintigny P, Girard L, Peyton M, Shen L, Fan Y, Giri U, Tumula PK, Nilsson MB, Gudikote J, Tran H, Cardnell RJ, Bearss DJ, Warner SL, Foulks JM, Kanner SB, Gandhi V, Krett N, Rosen ST, Kim ES, Herbst RS, Blumenschein GR, Lee JJ, Lippman SM, Ang KK, Mills GB, Hong WK, Weinstein JN, Wistuba II, Coombes KR, Minna JD, Heymach JV. An Epithelial–Mesenchymal Transition Gene Signature Predicts Resistance to EGFR and PI3K Inhibitors and Identifies Axl as a Therapeutic Target for Overcoming EGFR Inhibitor Resistance. Clinical Cancer Research 2013, 19: 279-290. PMID: 23091115, PMCID: PMC3567921, DOI: 10.1158/1078-0432.ccr-12-1558.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxl Receptor Tyrosine KinaseCarcinoma, Non-Small-Cell LungCell Line, TumorCluster AnalysisDrug Resistance, NeoplasmEpithelial-Mesenchymal TransitionErbB ReceptorsGene Expression ProfilingHumansLung NeoplasmsMiceNeoplasm MetastasisPhosphoinositide-3 Kinase InhibitorsProtein Kinase InhibitorsProteomeProteomicsProto-Oncogene ProteinsReceptor Protein-Tyrosine KinasesRecurrenceReproducibility of ResultsConceptsEpithelial-mesenchymal transitionPotential therapeutic targetEGFR inhibitor resistanceTherapeutic targetEMT signatureInhibitor resistanceMesenchymal transition gene signatureMesenchymal cellsCell linesBiomarker-Integrated ApproachesPI3K/Akt pathway inhibitorNon-small cell lung carcinoma cell lineEGFR mutation statusReceptor tyrosine kinase AXLNSCLC cell linesPI3K/Akt inhibitorCell lung carcinoma cell lineGene expression profilesTyrosine kinase AXLLung carcinoma cell linePI3K inhibitorsDrug response analysisAkt pathway inhibitorCarcinoma cell linesErlotinib resistance
2012
Phase I study of axitinib combined with paclitaxel, docetaxel or capecitabine in patients with advanced solid tumours
Martin LP, Kozloff MF, Herbst RS, Samuel TA, Kim S, Rosbrook B, Tortorici M, Chen Y, Tarazi J, Olszanski AJ, Rado T, Starr A, Cohen RB. Phase I study of axitinib combined with paclitaxel, docetaxel or capecitabine in patients with advanced solid tumours. British Journal Of Cancer 2012, 107: 1268-1276. PMID: 22996612, PMCID: PMC3494424, DOI: 10.1038/bjc.2012.407.Peer-Reviewed Original ResearchConceptsAdvanced solid tumorsCommon treatment-related adverse eventsSolid tumorsTreatment-related adverse eventsAntitumour activitySelective second-generation inhibitorPhase ICo-administered agentsVascular endothelial growth factor receptorHand-foot syndromeEndothelial growth factor receptorHuman xenograft tumor modelsEfficacy of chemotherapyXenograft tumor modelMultiple tumor typesAxitinib pharmacokineticsCapecitabine pharmacokineticsGrowth factor receptorStable diseaseStarting doseAdverse eventsPartial responseComplete responseTreatment regimenDocetaxel exposurePhase I trial of axitinib combined with platinum doublets in patients with advanced non-small cell lung cancer and other solid tumours
Kozloff MF, Martin LP, Krzakowski M, Samuel TA, Rado TA, Arriola E, De Castro Carpeño J, Herbst RS, Tarazi J, Kim S, Rosbrook B, Tortorici M, Olszanski AJ, Cohen RB. Phase I trial of axitinib combined with platinum doublets in patients with advanced non-small cell lung cancer and other solid tumours. British Journal Of Cancer 2012, 107: 1277-1285. PMID: 22990652, PMCID: PMC3494447, DOI: 10.1038/bjc.2012.406.Peer-Reviewed Original ResearchConceptsNon-small cell lung cancerPaclitaxel/carboplatinAdvanced non-small cell lung cancerPharmacokinetics of axitinibGemcitabine/cisplatinCell lung cancerAxitinib 5Platinum doubletsLung cancerSolid tumorsSquamous cell non-small cell lung cancerTreatment-related adverse eventsSelective second-generation inhibitorVascular endothelial growth factor receptorObjective response rateDose-limiting toxicityPhase I trialEndothelial growth factor receptorDose-finding trialDrug-drug interactionsPhase I dose-finding trialsCisplatin regimensFebrile neutropeniaGrowth factor receptorExpansion cohort
2011
Efficacy of bevacizumab plus erlotinib versus erlotinib alone in advanced non-small-cell lung cancer after failure of standard first-line chemotherapy (BeTa): a double-blind, placebo-controlled, phase 3 trial
Herbst RS, Ansari R, Bustin F, Flynn P, Hart L, Otterson GA, Vlahovic G, Soh CH, O'Connor P, Hainsworth J. Efficacy of bevacizumab plus erlotinib versus erlotinib alone in advanced non-small-cell lung cancer after failure of standard first-line chemotherapy (BeTa): a double-blind, placebo-controlled, phase 3 trial. The Lancet 2011, 377: 1846-1854. PMID: 21621716, PMCID: PMC4134127, DOI: 10.1016/s0140-6736(11)60545-x.Peer-Reviewed Original ResearchMeSH KeywordsAgedAngiogenesis InhibitorsAntibodies, MonoclonalAntibodies, Monoclonal, HumanizedAntineoplastic Combined Chemotherapy ProtocolsBevacizumabCarcinoma, Non-Small-Cell LungDisease-Free SurvivalDouble-Blind MethodErlotinib HydrochlorideFemaleHumansLung NeoplasmsMaleMiddle AgedProportional Hazards ModelsProtein Kinase InhibitorsQuinazolinesSurvival RateVascular Endothelial Growth Factor AConceptsPhase 3 trialBevacizumab groupCell lung cancerAdverse eventsOverall survivalRefractory NSCLCPrimary endpointLung cancerControl groupComputer-generated randomisation sequenceGrade 5 adverse eventsStandard first-line chemotherapyCalculation of incidenceEfficacy of bevacizumabArterial thromboembolic eventsFirst-line chemotherapyMedian overall survivalObjective response rateSerious adverse eventsAddition of bevacizumabFirst-line treatmentPhase 1/2 trialProgression-free survivalToxic effect profilesActivity of erlotinib
2010
Molecular Pharmacology and Antitumor Activity of PHT-427, a Novel Akt/Phosphatidylinositide-Dependent Protein Kinase 1 Pleckstrin Homology Domain Inhibitor
Meuillet EJ, Zuohe S, Lemos R, Ihle N, Kingston J, Watkins R, Moses SA, Zhang S, Du-Cuny L, Herbst R, Jacoby JJ, Zhou LL, Ahad AM, Mash EA, Kirkpatrick DL, Powis G. Molecular Pharmacology and Antitumor Activity of PHT-427, a Novel Akt/Phosphatidylinositide-Dependent Protein Kinase 1 Pleckstrin Homology Domain Inhibitor. Molecular Cancer Therapeutics 2010, 9: 706-717. PMID: 20197390, PMCID: PMC2837366, DOI: 10.1158/1535-7163.mct-09-0985.Peer-Reviewed Original ResearchMeSH Keywords3-Phosphoinositide-Dependent Protein KinasesAnimalsAntineoplastic AgentsFemaleHumansMiceMice, Inbred C57BLMice, NudeModels, BiologicalOncogene Protein v-aktProtein BindingProtein Interaction Domains and MotifsProtein Kinase InhibitorsProtein Serine-Threonine KinasesSulfonamidesThiadiazolesTumor Cells, CulturedXenograft Model Antitumor AssaysConceptsAntitumor activityTumor xenograftsNon-small cell lung cancerMolecular pharmacologyCell lung cancerAdditive antitumor activityHuman tumor xenograftsPHT-427K-ras mutant tumorsVivo antitumor activityLung cancerSensitive tumorsPIK3CA mutationsBreast cancerImmunodeficient miceBlood chemistryMutant tumorsCombination studiesResistant cellsMinimal toxicityWeight lossTumorsCancerCancer cellsAkt inhibition
2008
Molecular Characteristics of Bronchioloalveolar Carcinoma and Adenocarcinoma, Bronchioloalveolar Carcinoma Subtype, Predict Response to Erlotinib
Miller VA, Riely GJ, Zakowski MF, Li AR, Patel JD, Heelan RT, Kris MG, Sandler AB, Carbone DP, Tsao A, Herbst RS, Heller G, Ladanyi M, Pao W, Johnson DH. Molecular Characteristics of Bronchioloalveolar Carcinoma and Adenocarcinoma, Bronchioloalveolar Carcinoma Subtype, Predict Response to Erlotinib. Journal Of Clinical Oncology 2008, 26: 1472-1478. PMID: 18349398, DOI: 10.1200/jco.2007.13.0062.Peer-Reviewed Original ResearchMeSH KeywordsAdenocarcinomaAdenocarcinoma, Bronchiolo-AlveolarAdultAgedAged, 80 and overAntineoplastic AgentsBiomarkers, TumorDisease-Free SurvivalErbB ReceptorsErlotinib HydrochlorideFemaleHumansImmunohistochemistryLung NeoplasmsMaleMiddle AgedMutationProtein Kinase InhibitorsProto-Oncogene ProteinsProto-Oncogene Proteins p21(ras)QuinazolinesRas ProteinsSuppressor of Cytokine Signaling ProteinsTreatment OutcomeConceptsProgression-free survivalBronchioloalveolar carcinomaResponse rateEGFR mutationsEGFR immunohistochemistryKRAS mutationsEpidermal growth factor receptor (EGFR) mutationsPrimary end pointEfficacy of erlotinibPhase II trialSubset of patientsCell lung cancerBAC subtypeOverall response rateKRAS mutation statusPure bronchioloalveolar carcinomaBronchioloalveolar carcinoma (BAC) subtypeMolecular characteristicsMedian OSII trialMedian survivalOverall survivalHistologic subtypeLung cancerUnivariate analysis