2002
Deoxyribozymes: new activities and new applications
Emilsson G, Breaker R. Deoxyribozymes: new activities and new applications. Cellular And Molecular Life Sciences 2002, 59: 596-607. PMID: 12022469, PMCID: PMC11337523, DOI: 10.1007/s00018-002-8452-4.Peer-Reviewed Original Research
2001
In Vitro Selection of Kinase and Ligase Deoxyribozymes
Li Y, Breaker R. In Vitro Selection of Kinase and Ligase Deoxyribozymes. Methods 2001, 23: 179-190. PMID: 11181037, DOI: 10.1006/meth.2000.1119.Peer-Reviewed Original ResearchConceptsDNA ligationModern living systemsDNA kinaseEnzymatic functionRandom sequence populationVitro SelectionProtein enzymesConstruction of DNADNA constructsDNA phosphorylationDNADeoxyribozymesKinaseLiving systemsFundamental roleChemical reactionsAdenylationFundamental questionsBiocatalysisPhosphorylationEnzymeBiotechnologySelection strategyDiscoveryDetailed overview
1999
Phosphorylating DNA with DNA
Li Y, Breaker R. Phosphorylating DNA with DNA. Proceedings Of The National Academy Of Sciences Of The United States Of America 1999, 96: 2746-2751. PMID: 10077582, PMCID: PMC15840, DOI: 10.1073/pnas.96.6.2746.Peer-Reviewed Original ResearchConceptsSubstrate recognition patternRandom sequence poolsKinase-like activityStandard NTPsATP hydrolysisSpecific target DNAVitro SelectionIndividual DNAProtein enzymesDNADNTP substratesMultiple turnoversDeoxyribozymesEnzymeTarget DNABiological systemsDeoxyribose moietyGTPNTPsRNAATPDNTPsCatalytic potentialSelectionRiboseIn Vitro Selection of Nucleic Acid Enzymes
Breaker R, Kurz M. In Vitro Selection of Nucleic Acid Enzymes. Current Topics In Microbiology And Immunology 1999, 243: 137-158. PMID: 10453642, DOI: 10.1007/978-3-642-60142-2_8.Peer-Reviewed Original ResearchConceptsDiversity of enzymesYears of evolutionNucleic acid enzymesEvolutionary historyNucleic acidsBiochemical functionsDNA substratesMetabolic machineryVitro SelectionProtein enzymesCatalytic functionBiological catalystsAcid enzymesHydrolysis reactionProteinEnzymeNatural functionRibozymeDistinct classesRNAEssential componentReactionMachineryCatalystDiversity
1998
An amino acid as a cofactor for a catalytic polynucleotide
Roth A, Breaker R. An amino acid as a cofactor for a catalytic polynucleotide. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 6027-6031. PMID: 9600911, PMCID: PMC27579, DOI: 10.1073/pnas.95.11.6027.Peer-Reviewed Original ResearchConceptsAmino acidsRate enhancementDramatic rate enhancementMetal ion cofactorsAbsence of enzymeGeneral base catalystSuperior polymerChemical catalysisBiological catalystsRNA cleavage reactionCatalytic potentialOrganic cofactorImidazole groupsNatural ribozymesRNA worldBase catalystChemical groupsCatalytic mechanismCatalytic DNACleavage reactionIon cofactorProtein enzymesStructural foldingSubstrate cleavageConstituent amino acids
1997
Rational design of allosteric ribozymes
Tang J, Breaker R. Rational design of allosteric ribozymes. Cell Chemical Biology 1997, 4: 453-459. PMID: 9224568, DOI: 10.1016/s1074-5521(97)90197-6.Peer-Reviewed Original ResearchConceptsAllosteric regulationAllosteric ribozymesEffector moleculesProtein enzymesActive siteCatalytic ratePresence of dATPSelf-cleaving ribozymesSmall effector moleculesPresence of ATPSmall molecule receptorRational design strategyCellular processesEnzyme active siteAptamer domainAllosteric controlAllosteric enzymeCatalytic RNARNA aptamersConformational changesLigand moleculesMetabolic pathwaysCatalytic activityAllosteric hammerheadCatalytic features