2004
Roles of the Proline-rich Domain in SLP-76 Subcellular Localization and T Cell Function* [boxs]
Singer AL, Bunnell SC, Obstfeld AE, Jordan MS, Wu JN, Myung PS, Samelson LE, Koretzky GA. Roles of the Proline-rich Domain in SLP-76 Subcellular Localization and T Cell Function* [boxs]. Journal Of Biological Chemistry 2004, 279: 15481-15490. PMID: 14722089, DOI: 10.1074/jbc.m313339200.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAlanineAntigens, CDAntigens, Differentiation, T-LymphocyteArginineBlotting, WesternCalciumCell LineCell LineageFlow CytometryGene DeletionGenes, DominantHematopoietic Stem CellsHumansJurkat CellsLectins, C-TypeLuciferasesLymphocyte ActivationLysineMembrane MicrodomainsModels, BiologicalMutationPhosphoproteinsPlasmidsPrecipitin TestsProlineProtein Structure, TertiarySignal TransductionSrc Homology DomainsSubcellular FractionsTime FactorsT-LymphocytesTransfectionConceptsSLP-76P1 domainSLP-76 functionProline-rich domainProline-rich regionDomain deletion mutantMultiple hematopoietic lineagesLeukocyte-specific phosphoproteinSrc homologyDeletion mutantsSignal transductionSubcellular localizationHematopoietic lineagesFunctional roleProtein fragmentsT cell receptorMolecular scaffoldsCell functionCell receptorLocalizationComplementary approachesDomainT cell functionMolecular associationDirect evidence
2002
Differential Requirement for LAT and SLP-76 in GPVI versus T Cell Receptor Signaling
Judd BA, Myung PS, Obergfell A, Myers EE, Cheng AM, Watson SP, Pear WS, Allman D, Shattil SJ, Koretzky GA. Differential Requirement for LAT and SLP-76 in GPVI versus T Cell Receptor Signaling. Journal Of Experimental Medicine 2002, 195: 705-717. PMID: 11901197, PMCID: PMC2193740, DOI: 10.1084/jem.20011583.Peer-Reviewed Original Research
2001
Differential Requirement for SLP-76 Domains in T Cell Development and Function
Myung P, Derimanov G, Jordan M, Punt J, Liu Q, Judd B, Meyers E, Sigmund C, Freedman B, Koretzky G. Differential Requirement for SLP-76 Domains in T Cell Development and Function. Immunity 2001, 15: 1011-1026. PMID: 11754821, DOI: 10.1016/s1074-7613(01)00253-9.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAmino Acid MotifsAmino Acid SubstitutionAnimalsBinding SitesCalcium SignalingCarrier ProteinsCD3 ComplexCell DifferentiationClonal DeletionImmunophenotypingMembrane ProteinsMiceMice, Inbred C57BLMice, KnockoutMice, TransgenicMutation, MissensePhosphoproteinsProtein Structure, TertiaryReceptors, Antigen, T-CellRecombinant Fusion ProteinsSequence DeletionSignal TransductionSpleenSrc Homology DomainsStructure-Activity RelationshipThymus GlandT-LymphocytesConceptsSLP-76T cell developmentCell developmentDifferential requirementSLP-76 functionT cell receptor signalingCell receptor signalingAdaptor proteinMolecular mechanismsNull backgroundExamination of miceReceptor signalingCell functionPeripheral T cellsNew insightsTransgenic miceStructural requirementsSpecific domainsT cell functionT cellsCellsDomainMutantsThymocytesSignalingPositive and negative regulation of t-cell activation by adaptor proteins
Koretzky G, Myung P. Positive and negative regulation of t-cell activation by adaptor proteins. Nature Reviews Immunology 2001, 1: 95-107. PMID: 11905825, DOI: 10.1038/35100523.Peer-Reviewed Original ResearchConceptsEffector protein activityPost-translational modificationsSrc family kinasesAdaptor domainsAdaptor proteinSH3 domainFamily kinasesSubcellular localizationGenetic manipulationNegative regulationProtein activityNegative regulatorAdaptorEffector moleculesT cell activationCell linesSpatial organizationRegulatorProteinIntramolecular interactionsLymphocyte activationSH2ActivationKinaseComplexesCoupling of the TCR to Integrin Activation by SLAP-130/Fyb
Peterson E, Woods M, Dmowski S, Derimanov G, Jordan M, Wu J, Myung P, Liu Q, Pribila J, Freedman B, Shimizu Y, Koretzky G. Coupling of the TCR to Integrin Activation by SLAP-130/Fyb. Science 2001, 293: 2263-2265. PMID: 11567141, DOI: 10.1126/science.1063486.Peer-Reviewed Original ResearchMeSH KeywordsActinsAdaptor Proteins, Signal TransducingAnimalsAntigens, CDAntigens, Differentiation, T-LymphocyteCarrier ProteinsCD3 ComplexCell AdhesionCell MembraneImmunologic CappingIntercellular Adhesion Molecule-1Interleukin-2Lectins, C-TypeLymphocyte ActivationLymphocyte Function-Associated Antigen-1MicePhosphatidylinositol 3-KinasesPhosphoproteinsProtein-Tyrosine KinasesReceptors, Antigen, T-CellReceptors, Interleukin-2Signal TransductionT-LymphocytesSeparation of Notch1 Promoted Lineage Commitment and Expansion/Transformation in Developing T Cells
Allman D, Karnell F, Punt J, Bakkour S, Xu L, Myung P, Koretzky G, Pui J, Aster J, Pear W. Separation of Notch1 Promoted Lineage Commitment and Expansion/Transformation in Developing T Cells. Journal Of Experimental Medicine 2001, 194: 99-106. PMID: 11435476, PMCID: PMC2193437, DOI: 10.1084/jem.194.1.99.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBone MarrowCell LineageDNA-Binding ProteinsHematopoietic Stem CellsHyaluronan ReceptorsLeukemia, T-CellMembrane ProteinsMiceMice, TransgenicReceptor, Notch1Receptors, Antigen, T-Cell, alpha-betaReceptors, Cell SurfaceReceptors, Interleukin-2Signal TransductionThymus GlandT-LymphocytesTranscription FactorsConceptsT lineage commitmentT cell developmentHematopoietic stem cellsLineage commitmentCell developmentSrc homology 2 domainPre-T cell receptorBone marrowT cell-specific signalsBM transferT cellsCell-specific signalsMultipotent progenitor cellsDouble-positive T cellsTCR-beta transgeneLeukocyte proteinBM cell populationsFunction of Notch1T-cell leukemiaLater time pointsCD3 epsilonActive Notch1Beta transgeneBM cellsCell leukemia