2023
HEXIM1 is an essential transcription regulator during human erythropoiesis
Lv X, Murphy K, Murphy Z, Getman M, Rahman N, Nakamura Y, Blanc L, Gallagher P, Palis J, Mohandas N, Steiner L. HEXIM1 is an essential transcription regulator during human erythropoiesis. Blood 2023, 142: 2198-2215. PMID: 37738561, PMCID: PMC10733840, DOI: 10.1182/blood.2022019495.Peer-Reviewed Original ResearchConceptsFetal globin expressionGene expressionGlobin expressionCycle progressionErythroid gene expressionBeta-globinBeta-globin locusGenome-wide profilingRNA polymerase II activityLong non-coding RNANon-coding RNAErythroid proliferationPolymerase II activityCell cycle progressionEssential transcription regulatorRNAPII activityRNAPII occupancyGlobin locusTranscription machineryTranscription regulatorsFetal globinRNAPIIFetal gene expressionHEXIM1Human erythropoiesisPhenotypic and proteomic characterization of the human erythroid progenitor continuum reveal dynamic changes in cell cycle and in metabolic pathways
Papoin J, Yan H, Leduc M, Le Gall M, Narla A, Palis J, Steiner L, Gallagher P, Hillyer C, Gautier E, Mohandas N, Blanc L. Phenotypic and proteomic characterization of the human erythroid progenitor continuum reveal dynamic changes in cell cycle and in metabolic pathways. American Journal Of Hematology 2023, 99: 99-112. PMID: 37929634, PMCID: PMC10877306, DOI: 10.1002/ajh.27145.Peer-Reviewed Original ResearchConceptsErythroid progenitor differentiationCell cycleErythroid progenitorsProgenitor differentiationMass spectrometry-based proteomicsFurther functional analysisSpectrometry-based proteomicsHuman erythroid progenitorsProtein machineryErythroid progenitor proliferationTerminal erythropoiesisProteomic characterizationHematopoietic stem cellsProteomic dataProgenitor populationsHuman erythropoiesisReticulocyte maturationFunctional analysisErythroid lineageOxidative phosphorylationProgenitor proliferationErythroid disordersMetabolic pathwaysAbsolute expressionStem cellsA Novel β-Globin Locus Deletional Syndrome: εγ-Thalassemia
Gallagher P. A Novel β-Globin Locus Deletional Syndrome: εγ-Thalassemia. Clinical Chemistry 2023, 69: 671-672. PMID: 37279577, DOI: 10.1093/clinchem/hvad067.Peer-Reviewed Original Research
2022
Gender analysis of Journal of Perinatology authorship during COVID-19
Gadek L, Dammann C, Savich R, Mmuo-Oji C, Barrera L, Gallagher P, Machut K. Gender analysis of Journal of Perinatology authorship during COVID-19. Journal Of Perinatology 2022, 43: 518-522. PMID: 36335276, PMCID: PMC9638437, DOI: 10.1038/s41372-022-01551-x.Peer-Reviewed Original ResearchAnemia in the pediatric patient
Gallagher PG. Anemia in the pediatric patient. Blood 2022, 140: 571-593. PMID: 35213686, PMCID: PMC9373018, DOI: 10.1182/blood.2020006479.Peer-Reviewed Original ResearchConceptsLow birth weightIron deficiency anemiaNovel pharmacologic agentsWorld Health OrganizationNeurologic complicationsHeart failurePediatric patientsPhysical examinationBirth weightDeficiency anemiaChronic diseasesNutritional anemiaPharmacologic agentsSyndromic causesUndiagnosed casesTreatment strategiesCommon causeFamily historyPopulation-based approachAnemiaImportant causePreschool-age childrenDiagnostic testingGenetic testingDysmorphic featuresExtramedullary hematopoietic stem cells
Gallagher P. Extramedullary hematopoietic stem cells. Blood 2022, 139: 3353-3354. PMID: 35679074, DOI: 10.1182/blood.2022015879.Peer-Reviewed Original ResearchHistone Acetyltransferases p300 and CBP Coordinate Distinct Chromatin Remodeling Programs in Vascular Smooth Muscle Plasticity
Chakraborty R, Ostriker AC, Xie Y, Dave JM, Gamez-Mendez A, Chatterjee P, Abu Y, Valentine J, Lezon-Geyda K, Greif DM, Schulz VP, Gallagher PG, Sessa WC, Hwa J, Martin KA. Histone Acetyltransferases p300 and CBP Coordinate Distinct Chromatin Remodeling Programs in Vascular Smooth Muscle Plasticity. Circulation 2022, 145: 1720-1737. PMID: 35502657, DOI: 10.1161/circulationaha.121.057599.Peer-Reviewed Original ResearchConceptsHistone acetylationContractile genesContractile protein expressionPhenotypic switchingHistone acetyl transferase p300Human intimal hyperplasiaPlatelet-derived growth factor treatmentAcetyl transferase p300Key regulatory mechanismSmooth muscle cell phenotypeP300 expressionP300-dependent acetylationSmooth muscle plasticityDistinct functional interactionsMuscle cell phenotypeProtein expressionIntimal hyperplasiaRole of p300Methylcytosine dioxygenase TET2Chromatin modificationsEpigenetic regulationVSMC phenotypic switchingSpecific histoneCardiovascular diseaseMaster regulator
2021
The Journal of Perinatology: looking forward
Gallagher PG. The Journal of Perinatology: looking forward. Journal Of Perinatology 2021, 41: 2700-2701. PMID: 34907365, PMCID: PMC8669232, DOI: 10.1038/s41372-021-01291-4.Peer-Reviewed Original ResearchRegulation of RNA polymerase II activity is essential for terminal erythroid maturation
Murphy ZC, Murphy K, Myers J, Getman M, Couch T, Schulz VP, Lezon-Geyda K, Palumbo C, Yan H, Mohandas N, Gallagher PG, Steiner LA. Regulation of RNA polymerase II activity is essential for terminal erythroid maturation. Blood 2021, 138: 1740-1756. PMID: 34075391, PMCID: PMC8569412, DOI: 10.1182/blood.2020009903.Peer-Reviewed Original ResearchConceptsRNA polymerase IIRNA polymerase II activityTerminal erythroid maturationPolymerase II activityPolymerase IIErythroid maturationHuman erythroblastsGene expressionTerminal maturationII activityStage-specific regulationHistone posttranslational modificationsTransposase-accessible chromatinErythroid-specific genesAccumulation of heterochromatinHigh-throughput sequencingLevel of transcriptionLate-stage erythroblastsEssential biologic processesAccessible chromatinHistone marksTranscription elongationChromatin structureTranscriptional repressionChromatin immunoprecipitationImpairment of human terminal erythroid differentiation by histone deacetylase 5 deficiency
Wang Y, Li W, Schulz VP, Zhao H, Qu X, Qi Q, Cheng Y, Guo X, Zhang S, Wei X, Liu D, Yazdanbakhsh K, Hillyer CD, Mohandas N, Chen L, Gallagher PG, An X. Impairment of human terminal erythroid differentiation by histone deacetylase 5 deficiency. Blood 2021, 138: 1615-1627. PMID: 34036344, PMCID: PMC8554652, DOI: 10.1182/blood.2020007401.Peer-Reviewed Original ResearchConceptsTerminal erythroid differentiationChromatin condensationErythroid differentiationHuman erythroid cellsAcetylation of H4RNA sequencing analysisEnucleation of erythroblastsGroup of enzymesLate-stage erythroblastsErythroid cell culturesHDAC family membersActivation of p53Short hairpin RNAChromatin accessibilityATAC-seqMammalian erythropoiesisH4 deacetylationNonhistone proteinsH4 acetylationDiverse functionsHDAC inhibitor treatmentHuman erythropoiesisKnockdown of HDAC5Erythroid cellsGene expressionD‐bifunctional protein deficiency caused by splicing variants in a neonate with severe peroxisomal dysfunction and persistent hypoglycemia
Werner KM, Cox AJ, Qian E, Jain P, Ji W, Tikhonova I, Castaldi C, Bilguvar K, Knight J, Ferdinandusse S, Fawaz R, Jiang Y, Gallagher PG, Bizzarro M, Gruen JR, Bale A, Zhang H. D‐bifunctional protein deficiency caused by splicing variants in a neonate with severe peroxisomal dysfunction and persistent hypoglycemia. American Journal Of Medical Genetics Part A 2021, 188: 357-363. PMID: 34623748, PMCID: PMC8678290, DOI: 10.1002/ajmg.a.62520.Peer-Reviewed Original ResearchConceptsBifunctional protein deficiencyEarly mortalityClinical spectrumPersistent hypoglycemiaDBP deficiencyFat-soluble vitamin deficiencyImportant prognostic informationProtein deficiencyEnzyme deficiencyYears of lifePeroxisomal enzyme deficienciesResidual enzyme functionAbsent enzyme activityRapid whole-genome sequencingUnexplained hypoglycemiaEarly managementPrognostic informationVitamin deficiencyClinical severityNeonatal hypotoniaHigh burdenPeroxisomal dysfunctionPatient's fatherPsychomotor delayLong-chain fatty acidsRecommendations for diagnosis and treatment of methemoglobinemia
Iolascon A, Bianchi P, Andolfo I, Russo R, Barcellini W, Fermo E, Toldi G, Ghirardello S, Rees D, Van Wijk R, Kattamis A, Gallagher PG, Roy N, Taher A, Mohty R, Kulozik A, De Franceschi L, Gambale A, De Montalembert M, Forni GL, Harteveld CL, Prchal J, cell and iron of EHA and EuroBloodNet S. Recommendations for diagnosis and treatment of methemoglobinemia. American Journal Of Hematology 2021, 96: 1666-1678. PMID: 34467556, PMCID: PMC9291883, DOI: 10.1002/ajh.26340.Peer-Reviewed Original ResearchDifficulty in Diagnosis of Hereditary Spherocytosis in the Neonate
Gallagher PG. Difficulty in Diagnosis of Hereditary Spherocytosis in the Neonate. Pediatrics 2021, 148: e2021051100. PMID: 34376531, DOI: 10.1542/peds.2021-051100.Peer-Reviewed Original ResearchAn Initiative to Decrease Laboratory Testing in a NICU
Klunk CJ, Barrett RE, Peterec SM, Blythe E, Brockett R, Kenney M, Natusch A, Thursland C, Gallagher PG, Pando R, Bizzarro MJ. An Initiative to Decrease Laboratory Testing in a NICU. Pediatrics 2021, 148: e2020000570. PMID: 34088759, DOI: 10.1542/peds.2020-000570.Peer-Reviewed Original ResearchMeSH KeywordsBilirubinBlood GlucoseBlood VolumeCarbon DioxideConnecticutHemorrhageHospitals, PediatricHumansInfant, NewbornIntensive Care Units, NeonatalLaboratories, HospitalMonitoring, PhysiologicPainPoint-of-Care TestingProcedures and Techniques UtilizationQuality ImprovementUnnecessary ProceduresConceptsExtreme laboratory valuesPatient daysLaboratory valuesOutcome measuresMultifaceted quality improvement projectSerum bilirubin testSecondary outcome measuresPrimary outcome measureHealthcare Improvement's ModelNotable adverse effectsLaboratory testingQuality improvement projectOrder of interventionsBlood lossNeurodevelopmental impairmentBlood glucoseSecondary measuresSustained reductionBilirubin testBlood volumeGuideline developmentLaboratory testsUnnecessary testsNICUAdverse effectsComprehensive phenotyping of erythropoiesis in human bone marrow: Evaluation of normal and ineffective erythropoiesis
Yan H, Ali A, Blanc L, Narla A, Lane JM, Gao E, Papoin J, Hale J, Hillyer CD, Taylor N, Gallagher PG, Raza A, Kinet S, Mohandas N. Comprehensive phenotyping of erythropoiesis in human bone marrow: Evaluation of normal and ineffective erythropoiesis. American Journal Of Hematology 2021, 96: 1064-1076. PMID: 34021930, PMCID: PMC8355124, DOI: 10.1002/ajh.26247.Peer-Reviewed Original ResearchConceptsTerminal erythroid differentiationErythroid differentiationHuman erythropoiesisErythroid cellsErythroid progenitorsPrimary bone marrow cellsPrimary erythroid cellsDisorders of erythropoiesisStage-specific defectsErythroid progenitor cellsFunctional insightsProgenitor stageProgenitor populationsHuman bone marrowBone marrowFactor responsivenessNormal erythropoiesisProgenitor cellsBone marrow cellsDiscrete populationsColony assayFlow cytometry-based techniqueDifferentiationProliferative capacityEarly populationJournal of Perinatology Editorial Updates 2021
Raju T, Cheng Y, Mimouni FB, Pearlman SA, Ryan RM, Swanson JR, Gallagher PG. Journal of Perinatology Editorial Updates 2021. Journal Of Perinatology 2021, 41: 917-922. PMID: 33850288, PMCID: PMC8042837, DOI: 10.1038/s41372-021-01048-z.Peer-Reviewed Original ResearchAn IDH1-vitamin C crosstalk drives human erythroid development by inhibiting pro-oxidant mitochondrial metabolism
Gonzalez-Menendez P, Romano M, Yan H, Deshmukh R, Papoin J, Oburoglu L, Daumur M, Dumé AS, Phadke I, Mongellaz C, Qu X, Bories PN, Fontenay M, An X, Dardalhon V, Sitbon M, Zimmermann VS, Gallagher PG, Tardito S, Blanc L, Mohandas N, Taylor N, Kinet S. An IDH1-vitamin C crosstalk drives human erythroid development by inhibiting pro-oxidant mitochondrial metabolism. Cell Reports 2021, 34: 108723. PMID: 33535038, PMCID: PMC9169698, DOI: 10.1016/j.celrep.2021.108723.Peer-Reviewed Original ResearchConceptsIsocitrate dehydrogenase 1Oxidative phosphorylationMitochondrial metabolismReactive oxygen speciesHuman erythroid differentiationHuman erythroid developmentMitochondrial oxidative phosphorylationVitamin C homeostasisHSPC developmentIDH1 knockdownErythroid developmentStepwise differentiationErythroid differentiationLate-stage erythropoiesisTerminal stepCritical regulatorHematopoietic stemMitochondrial superoxideMitochondrial oxidationProgenitor cellsDehydrogenase 1Oxygen speciesCongenital dyserythropoietic anemiaCentral roleDyserythropoietic anemiaDisparities in perinatal health: what can we do?
Forson-Dare Z, Harris LM, Gallagher PG. Disparities in perinatal health: what can we do? Journal Of Perinatology 2021, 41: 363-364. PMID: 33510417, DOI: 10.1038/s41372-021-00920-2.Peer-Reviewed Original ResearchCritical disparities in perinatal health—understanding risks and changing the outcomes
Harris LM, Forson-Dare Z, Gallagher PG. Critical disparities in perinatal health—understanding risks and changing the outcomes. Journal Of Perinatology 2021, 41: 181-182. PMID: 33462341, DOI: 10.1038/s41372-020-00913-7.Peer-Reviewed Original Research
2020
Functional characterization of a novel SLC40A1 Arg88Ile mutation in a kindred with familial iron overload treated by phlebotomy
Womack J, Sukumaran A, Li X, Lozovatsky L, Gallagher PG, Seid JE, Finberg KE. Functional characterization of a novel SLC40A1 Arg88Ile mutation in a kindred with familial iron overload treated by phlebotomy. Blood Cells Molecules And Diseases 2020, 87: 102532. PMID: 33385755, PMCID: PMC8272917, DOI: 10.1016/j.bcmd.2020.102532.Peer-Reviewed Original Research