2024
Circulating Tumor DNA Dynamics Reveal KRAS G12C Mutation Heterogeneity and Response to Treatment with the KRAS G12C Inhibitor Divarasib in Solid Tumors
Choi Y, Dharia N, Jun T, Chang J, Royer-Joo S, Yau K, Assaf Z, Aimi J, Sivakumar S, Montesion M, Sacher A, LoRusso P, Desai J, Schutzman J, Shi Z, group A. Circulating Tumor DNA Dynamics Reveal KRAS G12C Mutation Heterogeneity and Response to Treatment with the KRAS G12C Inhibitor Divarasib in Solid Tumors. Clinical Cancer Research 2024, 30: of1-of10. PMID: 38995268, PMCID: PMC11369623, DOI: 10.1158/1078-0432.ccr-24-0255.Peer-Reviewed Original ResearchConceptsKRAS G12C mutationTumor fractionSolid tumorsTumor typesG12C mutationOn-treatment time pointsNon-small cell lung cancerMutational heterogeneityAssociated with tumor typeProgression-free survivalPlasma samplesPhase 1 studyCell lung cancerCycle 1 dayAssociated with patient outcomesVariant allele frequencyAssociated with responseCtDNA levelsCtDNA profilingMetastatic sitesTruncal mutationsTumor DNATreatment responseLung cancerTumor tissues
2020
Clinical impact of COVID-19 on patients with cancer (CCC19): a cohort study
Kuderer NM, Choueiri TK, Shah DP, Shyr Y, Rubinstein SM, Rivera DR, Shete S, Hsu CY, Desai A, de Lima Lopes G, Grivas P, Painter CA, Peters S, Thompson MA, Bakouny Z, Batist G, Bekaii-Saab T, Bilen MA, Bouganim N, Larroya MB, Castellano D, Del Prete SA, Doroshow DB, Egan PC, Elkrief A, Farmakiotis D, Flora D, Galsky MD, Glover MJ, Griffiths EA, Gulati AP, Gupta S, Hafez N, Halfdanarson TR, Hawley JE, Hsu E, Kasi A, Khaki AR, Lemmon CA, Lewis C, Logan B, Masters T, McKay RR, Mesa RA, Morgans AK, Mulcahy MF, Panagiotou OA, Peddi P, Pennell NA, Reynolds K, Rosen LR, Rosovsky R, Salazar M, Schmidt A, Shah SA, Shaya JA, Steinharter J, Stockerl-Goldstein KE, Subbiah S, Vinh DC, Wehbe FH, Weissmann LB, Wu JT, Wulff-Burchfield E, Xie Z, Yeh A, Yu PP, Zhou AY, Zubiri L, Mishra S, Lyman GH, Rini BI, Warner JL, Consortium C, Abidi M, Acoba J, Agarwal N, Ahmad S, Ajmera A, Altman J, Angevine A, Azad N, Bar M, Bardia A, Barnholtz-Sloan J, Barrow B, Bashir B, Belenkaya R, Berg S, Bernicker E, Bestvina C, Bishnoi R, Boland G, Bonnen M, Bouchard G, Bowles D, Busser F, Cabal A, Caimi P, Carducci T, Casulo C, Chen J, Clement J, Chism D, Cook E, Curran C, Daher A, Dailey M, Dahiya S, Deeken J, Demetri G, DiLullo S, Duma N, Elias R, Faller B, Fecher L, Feldman L, Friese C, Fu P, Fu J, Futreal A, Gainor J, Garcia J, Gill D, Gillaspie E, Giordano A, Glace G, Grothey A, Gulati S, Gurley M, Halmos B, Herbst R, Hershman D, Hoskins K, Jain R, Jabbour S, Jha A, Johnson D, Joshi M, Kelleher K, Kharofa J, Khan H, Knoble J, Koshkin V, Kulkarni A, Lammers P, Leighton J, Lewis M, Li X, Li A, Lo K, Loaiza-Bonilla A, LoRusso P, Low C, Lustberg M, Mahadevan D, Mansoor A, Marcum M, Markham M, Marshall C, Mashru S, Matar S, McNair C, McWeeney S, Mehnert J, Menendez A, Menon H, Messmer M, Monahan R, Mushtaq S, Nagaraj G, Nagle S, Naidoo J, Nakayama J, Narayan V, Nelson H, Nemecek E, Nguyen R, Nuzzo P, Oberstein P, Olszewski A, Owenby S, Pasquinelli M, Philip J, Prabhakaran S, Puc M, Ramirez A, Rathmann J, Revankar S, Rho Y, Rhodes T, Rice R, Riely G, Riess J, Rink C, Robilotti E, Rosenstein L, Routy B, Rovito M, Saif M, Sanyal A, Schapira L, Schwartz C, Serrano O, Shah M, Shah C, Shaw G, Shergill A, Shouse G, Soares H, Solorzano C, Srivastava P, Stauffer K, Stover D, Stratton J, Stratton C, Subbiah V, Tamimi R, Tannir N, Topaloglu U, Van Allen E, Van Loon S, Vega-Luna K, Venepalli N, Verma A, Vikas P, Wall S, Weinstein P, Weiss M, Wise-Draper T, Wood W, Xu W, Yackzan S, Zacks R, Zhang T, Zimmer A, West J. Clinical impact of COVID-19 on patients with cancer (CCC19): a cohort study. The Lancet 2020, 395: 1907-1918. PMID: 32473681, PMCID: PMC7255743, DOI: 10.1016/s0140-6736(20)31187-9.Peer-Reviewed Original ResearchConceptsLogistic regression analysisCause mortalityActive cancerCohort studySmoking statusRisk factorsCOVID-19Acute respiratory syndrome coronavirus 2 infectionEastern Cooperative Oncology Group performance statusSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectionSyndrome coronavirus 2 infectionCOVID-19 disease courseBaseline clinical conditionsReceipt of azithromycinCoronavirus 2 infectionPotential prognostic variablesNumber of comorbiditiesActive anticancer treatmentCohort of patientsDays of diagnosisPotential prognostic factorsAmerican Cancer SocietyGeneral risk factorsRegression analysisSpecific cancer treatmentPhase I Dose-Escalation and -Expansion Study of Telisotuzumab (ABT-700), an Anti–c-Met Antibody, in Patients with Advanced Solid Tumors
Strickler JH, LoRusso P, Salgia R, Kang YK, Yen C, Lin CC, Ansell P, Motwani M, Wong S, Yue H, Wang L, Reilly E, Afar D, Naumovski L, Ramanathan RK. Phase I Dose-Escalation and -Expansion Study of Telisotuzumab (ABT-700), an Anti–c-Met Antibody, in Patients with Advanced Solid Tumors. Molecular Cancer Therapeutics 2020, 19: 1210-1217. PMID: 32127466, DOI: 10.1158/1535-7163.mct-19-0529.Peer-Reviewed Original ResearchConceptsAdvanced solid tumorsSolid tumorsStable diseaseDose escalationCommon treatment-related adverse eventsAnti-c-Met antibodyTreatment-related adverse eventsDose-expansion phaseI Dose-EscalationAcceptable safety profileResponse Evaluation CriteriaDose-limiting toxicitySubset of patientsLinear pharmacokinetic profilePeak plasma concentrationAcute infusion reactionsHuman phase IDose cohortsDose expansionRECIST criteriaAdverse eventsEscalation cohortsInfusion reactionsObjective responsePartial response
2018
A phase I dose-escalation and dose-expansion study of brontictuzumab in subjects with selected solid tumors
Ferrarotto R, Eckhardt G, Patnaik A, LoRusso P, Faoro L, Heymach J, Kapoun A, Xu L, Munster P. A phase I dose-escalation and dose-expansion study of brontictuzumab in subjects with selected solid tumors. Annals Of Oncology 2018, 29: 1561-1568. PMID: 29726923, DOI: 10.1093/annonc/mdy171.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAntibodies, MonoclonalAntineoplastic Agents, ImmunologicalCohort StudiesDose-Response Relationship, DrugDrug Resistance, NeoplasmFemaleFollow-Up StudiesHumansMaleMaximum Tolerated DoseMiddle AgedNeoplasm Recurrence, LocalNeoplasmsPrognosisReceptor, Notch1Salvage TherapySurvival RateTissue DistributionConceptsNotch1 pathway activationPartial responseSolid tumorsPathway activationAdverse eventsCommon drug-related adverse eventsDrug-related adverse eventsDose-expansion studyGrade 3 diarrheaGrade 3 fatigueUnconfirmed partial responseRefractory solid tumorsProlonged SDsDisease stabilizationExpansion cohortMain toxicityRECIST 1.1Dose escalationEfficacy signalsClinical benefitPharmacodynamic effectsPreliminary efficacyAssessable subjectsImmunohistochemistry assaysNonlinear pharmacokinetics
1993
Immunohistologic evaluation of invasion-associated proteases in breast carcinoma.
Visscher D, Sarkar F, LoRusso P, Sakr W, Ottosen S, Wykes S, Crissman J. Immunohistologic evaluation of invasion-associated proteases in breast carcinoma. Modern Pathology 1993, 6: 302-6. PMID: 8346178.Peer-Reviewed Original ResearchConceptsBreast carcinomaUrokinase-type plasminogen activatorShort-term recurrence-free survivalCathepsin DNode-positive patientsRecurrence-free survivalProteolytic enzyme expressionHeterogeneous staining patternFree survivalImmunohistologic evaluationMetastatic diseasePositive patientsInflammatory cellsNeoplastic epitheliumExtracellular matrix dissolutionSystematic metastasisClinical aggressivenessMost tumorsTumor componentsMetastatic capacityCryostat sectionsCarcinomaMonoclonal antibodiesStaining patternPlasminogen activator