2024
Noninvasive assessment of the lung inflammation-fibrosis axis by targeted imaging of CMKLR1
Mannes P, Adams T, Farsijani S, Barnes C, Latoche J, Day K, Nedrow J, Ahangari F, Kaminski N, Lee J, Tavakoli S. Noninvasive assessment of the lung inflammation-fibrosis axis by targeted imaging of CMKLR1. Science Advances 2024, 10: eadm9817. PMID: 38896611, PMCID: PMC11186491, DOI: 10.1126/sciadv.adm9817.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisFibrotic lung diseaseRisk stratificationMurine modelLung fibrosisLung diseaseModel of bleomycin-induced lung fibrosisBleomycin-induced lung fibrosisImaging biomarkersMurine model of bleomycin-induced lung fibrosisBronchoalveolar lavage cellsMonocyte-derived macrophagesPositron emission tomographyInflammatory endotypesPulmonary fibrosisLavage cellsPoor survivalNoninvasive assessmentTherapeutic monitoringEmission tomographyCMKLR1FibrosisClinical trajectoryLungLung regionsIdentification of abnormal airway niches in the fibrotic lung using spatial transcriptomics
Justet A, Ravaglia C, Zhao A, Adams N, Agshin B, Kaminski N, Tomasseti S, Poletti V. Identification of abnormal airway niches in the fibrotic lung using spatial transcriptomics. Revue Des Maladies Respiratoires 2024, 41: 215. DOI: 10.1016/j.rmr.2024.01.068.Peer-Reviewed Original ResearchVascular endothelial cellsIPF patientsIPF lungsEpithelial cellsLung tissueEndothelial cellsCOVID patientsAirway epithelial cellsAbnormal cell populationsAlveolar epithelial cellsProgression to fibrosisLong COVIDBasaloid cellsControl patientsImmune cellsGene panelFFPE slidesFibrotic lungsProximal airwaysPatientsDistal lungLungBasal cellsCell populationsLong COVID patients
2023
Morphometrics and Mucosal Immune Features in Lungs With End-stage Chronic Obstructive Pulmonary Disease
De Fays C, Beeckmans H, Kerckhof P, Geudens V, Vermaut A, Gyselinck I, Goos T, Vermant M, Kaes J, Van Slambrouck J, Mohamady Y, Willems L, Aversa L, Maes K, Aelbrecht C, Everaerts S, Mcdonough J, De Sadeleer L, Gohy S, Ambroise J, Wuyts W, Janssens W, Ceulemans L, Van Raemdonck D, Vos R, Hackett T, Hogg J, Kaminski N, Pilette C, Gayan-Ramirez G, Vanaudenaerde B. Morphometrics and Mucosal Immune Features in Lungs With End-stage Chronic Obstructive Pulmonary Disease. 2023, a6145-a6145. DOI: 10.1164/ajrccm-conference.2023.207.1_meetingabstracts.a6145.Peer-Reviewed Original ResearchRational engineering of lung alveolar epithelium
Leiby K, Yuan Y, Ng R, Raredon M, Adams T, Baevova P, Greaney A, Hirschi K, Campbell S, Kaminski N, Herzog E, Niklason L. Rational engineering of lung alveolar epithelium. Npj Regenerative Medicine 2023, 8: 22. PMID: 37117221, PMCID: PMC10147714, DOI: 10.1038/s41536-023-00295-2.Peer-Reviewed Original Research
2021
A Pulmonary Vascular Model From Endothelialized Whole Organ Scaffolds
Yuan Y, Leiby KL, Greaney AM, Raredon MSB, Qian H, Schupp JC, Engler AJ, Baevova P, Adams TS, Kural MH, Wang J, Obata T, Yoder MC, Kaminski N, Niklason LE. A Pulmonary Vascular Model From Endothelialized Whole Organ Scaffolds. Frontiers In Bioengineering And Biotechnology 2021, 9: 760309. PMID: 34869270, PMCID: PMC8640093, DOI: 10.3389/fbioe.2021.760309.Peer-Reviewed Original ResearchVascular diseaseEndothelial phenotypeLung vascular diseaseAcute lung injuryPulmonary microvascular functionWhole lung scaffoldsVascular barrier functionLung injuryMicrovascular functionEndothelial cell coverageSingle-cell RNA-sequencing analysisLPS treatmentProinflammatory signalsWhole lungLung endotheliumLung systemVascular barrierOrgan engineering approachesBarrier functionLungWhole-organ scaffoldsVascular structuresDrug mechanismsEndotheliumDisease
2020
Mitochondrial antiviral signaling protein is crucial for the development of pulmonary fibrosis
Kim SH, Lee JY, Yoon CM, Shin HJ, Lee SW, Rosas I, Herzog E, Dela Cruz C, Kaminski N, Kang MJ. Mitochondrial antiviral signaling protein is crucial for the development of pulmonary fibrosis. European Respiratory Journal 2020, 57: 2000652. PMID: 33093124, PMCID: PMC8559259, DOI: 10.1183/13993003.00652-2020.Peer-Reviewed Original ResearchConceptsDamage-associated molecular patternsIdiopathic pulmonary fibrosisPulmonary fibrosisMAVS aggregationMultiple damage-associated molecular patternsExperimental pulmonary fibrosisMitochondrial antiviral signaling proteinInnate immune responseIPF patientsMAVS signalingIPF treatmentBleomycin injuryLung fibrosisTherapeutic effectImmune responseTherapeutic strategiesMAVS expressionFibrosisDanger signalsCritical mediatorMolecular patternsABT-263LungInjuryBH3 mimeticsSingle-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis
Adams TS, Schupp JC, Poli S, Ayaub EA, Neumark N, Ahangari F, Chu SG, Raby BA, DeIuliis G, Januszyk M, Duan Q, Arnett HA, Siddiqui A, Washko GR, Homer R, Yan X, Rosas IO, Kaminski N. Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Science Advances 2020, 6: eaba1983. PMID: 32832599, PMCID: PMC7439502, DOI: 10.1126/sciadv.aba1983.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisVascular endothelial cellsIPF lungsPulmonary fibrosisChronic obstructive pulmonary disease (COPD) lungsFatal interstitial lung diseaseEndothelial cellsInterstitial lung diseaseCell populationsIPF myofibroblastsMyofibroblast fociNonsmoker controlsLung diseaseCOPD lungsBasaloid cellsSingle-cell atlasInvasive fibroblastsMacrophage populationsLungStromal cellsEpithelial cellsFibrosisCellular populationsDevelopmental markersSingle-cell RNA-seq
2019
Transcriptional regulatory model of fibrosis progression in the human lung
McDonough JE, Ahangari F, Li Q, Jain S, Verleden SE, Herazo-Maya J, Vukmirovic M, DeIuliis G, Tzouvelekis A, Tanabe N, Chu F, Yan X, Verschakelen J, Homer RJ, Manatakis DV, Zhang J, Ding J, Maes K, De Sadeleer L, Vos R, Neyrinck A, Benos PV, Bar-Joseph Z, Tantin D, Hogg JC, Vanaudenaerde BM, Wuyts WA, Kaminski N. Transcriptional regulatory model of fibrosis progression in the human lung. JCI Insight 2019, 4 PMID: 31600171, PMCID: PMC6948862, DOI: 10.1172/jci.insight.131597.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisAdvanced fibrosisAlveolar surface densityFibrosis progressionLung fibrosisHuman lungDynamic Regulatory Events MinerExtent of fibrosisIPF lungsPulmonary fibrosisControl lungsIPF tissueB lymphocytesFibrosisLungLinear mixed-effects modelsMixed-effects modelsGene expression changesSystems biology modelsDifferential gene expression analysisGene expression analysisProgressionGene expression networksRNA sequencingBiology models
2018
Reducing protein oxidation reverses lung fibrosis
Anathy V, Lahue KG, Chapman DG, Chia SB, Casey DT, Aboushousha R, van der Velden JLJ, Elko E, Hoffman SM, McMillan DH, Jones JT, Nolin JD, Abdalla S, Schneider R, Seward DJ, Roberson EC, Liptak MD, Cousins ME, Butnor KJ, Taatjes DJ, Budd RC, Irvin CG, Ho YS, Hakem R, Brown KK, Matsui R, Bachschmid MM, Gomez JL, Kaminski N, van der Vliet A, Janssen-Heininger YMW. Reducing protein oxidation reverses lung fibrosis. Nature Medicine 2018, 24: 1128-1135. PMID: 29988126, PMCID: PMC6204256, DOI: 10.1038/s41591-018-0090-y.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisPulmonary fibrosisLung fibrosisDirect administrationAirways of miceGrowth factor beta 1Transgenic mouse modelFibrotic lungsLung tissueMouse modelAged animalsFibrosisLung epitheliumTherapeutic potentialExcessive depositionBeta 1Transgenic overexpressionOxidative stressExact mechanismAirwayGlrxLungMiceAdministrationOxidative mechanismsA role for telomere length and chromosomal damage in idiopathic pulmonary fibrosis
McDonough JE, Martens DS, Tanabe N, Ahangari F, Verleden SE, Maes K, Verleden GM, Kaminski N, Hogg JC, Nawrot TS, Wuyts WA, Vanaudenaerde BM. A role for telomere length and chromosomal damage in idiopathic pulmonary fibrosis. Respiratory Research 2018, 19: 132. PMID: 29986708, PMCID: PMC6038197, DOI: 10.1186/s12931-018-0838-4.Peer-Reviewed Original ResearchConceptsIPF lungsDisease severityChromosomal damagePulmonary fibrosisTelomere lengthBackgroundIdiopathic pulmonary fibrosisRegional disease severityStructural disease severityIdiopathic pulmonary fibrosisFatal lung diseaseAirway epithelial cellsMultivariate linear mixed-effects modelDonor lungsFibroblastic fociLung diseaseFibrotic markersTransplant surgeryPathological changesSevere diseaseLungLinear mixed-effects modelsQuantitative histologyMixed-effects modelsExtracellular matrixSeverity
2017
Chapter 7 MicroRNAs in Idiopathic Pulmonary Fibrosis Partners in Health and Disease
Pandit K, Kaminski N. Chapter 7 MicroRNAs in Idiopathic Pulmonary Fibrosis Partners in Health and Disease. 2017, 179-202. DOI: 10.1016/b978-0-12-800553-8.00007-x.Peer-Reviewed Original ResearchIdiopathic pulmonary fibrosisEtiology of IPFInterstitial lung diseaseExtent of fibrosisIPF patientsPulmonary fibrosisIrreversible scarringLung diseaseTreatment optionsAggressive formPotent cytokineGrowth factorDiseaseDreadful diseaseFibrosisLungTGFCurrent knowledgeMicroRNAsTarget genesGas exchangePatientsCytokinesScarringEtiology
2016
Integrated Genomics Reveals Convergent Transcriptomic Networks Underlying Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis
Kusko RL, Brothers JF, Tedrow J, Pandit K, Huleihel L, Perdomo C, Liu G, Juan-Guardela B, Kass D, Zhang S, Lenburg M, Martinez F, Quackenbush J, Sciurba F, Limper A, Geraci M, Yang I, Schwartz DA, Beane J, Spira A, Kaminski N. Integrated Genomics Reveals Convergent Transcriptomic Networks Underlying Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis. American Journal Of Respiratory And Critical Care Medicine 2016, 194: 948-960. PMID: 27104832, PMCID: PMC5067817, DOI: 10.1164/rccm.201510-2026oc.Peer-Reviewed Original ResearchMeSH KeywordsAdultEmphysemaFemaleGene Regulatory NetworksHumansHypoxia-Inducible Factor 1, alpha SubunitIdiopathic Pulmonary FibrosisI-kappa B ProteinsMaleMembrane ProteinsMiddle AgedNerve Tissue ProteinsOligonucleotide Array Sequence AnalysisPlatelet-Derived Growth FactorProto-Oncogene Proteins c-mdm2Pulmonary Disease, Chronic ObstructiveConceptsChronic obstructive pulmonary diseaseIdiopathic pulmonary fibrosisObstructive pulmonary diseasePulmonary diseasePulmonary fibrosisNCounter Analysis SystemHypoxia pathwayQuantitative polymerase chain reactionTranscriptomic pathwaysPolymerase chain reactionIndependent cohortEmphysemaIndependent sample setDiseaseGene expression arraysEnvironmental exposuresChain reactionFibrosisLungMolecular mechanismsExpression arraysMiR96Integrative genomics approachTranscriptional regulatory hubsPathwayPlexin C1 deficiency permits synaptotagmin 7–mediated macrophage migration and enhances mammalian lung fibrosis
Peng X, Moore M, Mathur A, Zhou Y, Sun H, Gan Y, Herazo‐Maya J, Kaminski N, Hu X, Pan H, Ryu C, Osafo‐Addo A, Homer RJ, Feghali‐Bostwick C, Fares W, Gulati M, Hu B, Lee C, Elias JA, Herzog EL. Plexin C1 deficiency permits synaptotagmin 7–mediated macrophage migration and enhances mammalian lung fibrosis. The FASEB Journal 2016, 30: 4056-4070. PMID: 27609773, PMCID: PMC5102121, DOI: 10.1096/fj.201600373r.Peer-Reviewed Original ResearchConceptsLung fibrosisPlexin C1Macrophage migrationPulmonary fibrosisBone marrow-derived cellsSynaptotagmin-7Idiopathic pulmonary fibrosisInterstitial lung diseaseMarrow-derived cellsTGF-β1 overexpressionFatal conditionLung diseaseMonocyte migrationUnrecognized observationCollagen accumulationFibrosisMice showBoyden chamberGenetic deletionLungMouse macrophagesSemaphorin receptorsMacrophagesC1s deficiencyDeficiency
2015
Enhancing Autophagy with Drugs or Lung-directed Gene Therapy Reverses the Pathological Effects of Respiratory Epithelial Cell Proteinopathy*
Hidvegi T, Stolz DB, Alcorn JF, Yousem SA, Wang J, Leme AS, Houghton AM, Hale P, Ewing M, Cai H, Garchar EA, Pastore N, Annunziata P, Kaminski N, Pilewski J, Shapiro SD, Pak SC, Silverman GA, Brunetti-Pierri N, Perlmutter DH. Enhancing Autophagy with Drugs or Lung-directed Gene Therapy Reverses the Pathological Effects of Respiratory Epithelial Cell Proteinopathy*. Journal Of Biological Chemistry 2015, 290: 29742-29757. PMID: 26494620, PMCID: PMC4705969, DOI: 10.1074/jbc.m115.691253.Peer-Reviewed Original ResearchConceptsSpontaneous pulmonary fibrosisPulmonary fibrosisΑ1-antitrypsin ZPathological effectsSevere pulmonary fibrosisRespiratory epithelial cellsPiZ miceRestrictive deficitsActivation of autophagyLeukocyte infiltrationSurfactant protein AAnimal modelsC deficiencyFibrosisProteinopathiesSkeletal muscleEpithelial cellsIntracellular accumulationAutophagolysosomal systemLungMiceAttractive targetAutophagyDrugsRecent studies
2013
Micromanaging microRNAs: using murine models to study microRNAs in lung fibrosis
Cardenas C, Kaminski N, Kass DJ. Micromanaging microRNAs: using murine models to study microRNAs in lung fibrosis. Drug Discovery Today Disease Models 2013, 10: e145-e151. PMID: 25328532, PMCID: PMC4201640, DOI: 10.1016/j.ddmod.2012.11.003.Peer-Reviewed Original ResearchIdiopathic pulmonary fibrosisLung fibrosisAlveolar cell hyperplasiaInterstitial lung diseaseExtensive phenotypic changesRole of microRNAsMyofibroblast fociPulmonary fibrosisCell hyperplasiaLung diseaseLung healthUnknown etiologyMurine modelTranscriptional programmingAnimal modelsFibrosisPhenotypic changesPathological processesDiseaseExtracellular matrixMicroRNAsLatest insightsSpecific patternsHyperplasiaLung
2012
Allele-specific transactivation of matrix metalloproteinase 7 by FOXA2 and correlation with plasma levels in idiopathic pulmonary fibrosis
Richards TJ, Park C, Chen Y, Gibson KF, Di Y, Pardo A, Watkins SC, Choi AM, Selman M, Pilewski J, Kaminski N, Zhang Y. Allele-specific transactivation of matrix metalloproteinase 7 by FOXA2 and correlation with plasma levels in idiopathic pulmonary fibrosis. American Journal Of Physiology - Lung Cellular And Molecular Physiology 2012, 302: l746-l754. PMID: 22268124, PMCID: PMC3331579, DOI: 10.1152/ajplung.00319.2011.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisMatrix metalloproteinase-7Plasma levelsIPF patientsPulmonary fibrosisMetalloproteinase-7MMP7 promoterIPF cohortIPF lungsPeripheral bloodHealthy controlsEmbryonic lung developmentPromoter polymorphismAA genotypeCT genotypeForkhead box A2 transcription factorMature lungLung developmentLungEpithelial cellsRs11568818PatientsFibrosisUpregulationKey regulator
2011
Integrative metabolome and transcriptome profiling reveals discordant energetic stress between mouse strains with differential sensitivity to acrolein‐induced acute lung injury
Fabisiak JP, Medvedovic M, Alexander DC, McDunn JE, Concel VJ, Bein K, Jang AS, Berndt A, Vuga LJ, Brant KA, Pope‐Varsalona H, Dopico RA, Ganguly K, Upadhyay S, Li Q, Hu Z, Kaminski N, Leikauf GD. Integrative metabolome and transcriptome profiling reveals discordant energetic stress between mouse strains with differential sensitivity to acrolein‐induced acute lung injury. Molecular Nutrition & Food Research 2011, 55: 1423-1434. PMID: 21823223, PMCID: PMC3482455, DOI: 10.1002/mnfr.201100291.Peer-Reviewed Original ResearchConceptsAcute lung injuryLung injuryAcrolein exposureMouse lungMouse strainsJ mouse lungEnvironmental tobacco smokeChain amino acid metabolismFatty acid β-oxidationLung metabolomeJ miceSM/J miceTobacco smokeAcrolein treatmentRespiratory irritantsAmino acid metabolismLungEnergetic stressInjuryAcid metabolismSM/JΒ-oxidationMiceIntegrative metabolomeHealth hazardsGlobal Microrna Profiles Of Idiopathic Pulmonary Fibrosis Lungs Indicate Reversal Of Lung Differentiation
Pandit K, Milosevic J, Benos P, Coronello C, Ben-Yehudah A, Hagood J, Ambalavanan N, Kaminski N. Global Microrna Profiles Of Idiopathic Pulmonary Fibrosis Lungs Indicate Reversal Of Lung Differentiation. 2011, a5528-a5528. DOI: 10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a5528.Peer-Reviewed Original Research
2009
Gene Expression Profiles of Acute Exacerbations of Idiopathic Pulmonary Fibrosis
Konishi K, Gibson KF, Lindell KO, Richards TJ, Zhang Y, Dhir R, Bisceglia M, Gilbert S, Yousem SA, Song JW, Kim DS, Kaminski N. Gene Expression Profiles of Acute Exacerbations of Idiopathic Pulmonary Fibrosis. American Journal Of Respiratory And Critical Care Medicine 2009, 180: 167-175. PMID: 19363140, PMCID: PMC2714820, DOI: 10.1164/rccm.200810-1596oc.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisStable idiopathic pulmonary fibrosisAcute exacerbationIPF lungsPulmonary fibrosisControl lungsPeripheral bloodReal-time quantitative reverse transcription polymerase chain reactionProtein levelsQuantitative reverse transcription polymerase chain reactionReverse transcription-polymerase chain reactionApoptosis of epitheliumTranscription-polymerase chain reactionDUTP nick-end labeling assayNick-end labeling assayGlobal gene expression signaturesAgilent gene expression microarraysEnd-labeling assayDEFA1-3Gene expression signaturesInflammatory etiologyEpithelial injuryControl subjectsExacerbationLungDecreased Expression of Cholesterol and Fatty Acid Synthesis Genes in Lungs of Patients with Pulmonary Fibrosis.
Geyer A, Gochuico B, Kaminski N, Morse D, Rosas I. Decreased Expression of Cholesterol and Fatty Acid Synthesis Genes in Lungs of Patients with Pulmonary Fibrosis. 2009, a1912. DOI: 10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a1912.Peer-Reviewed Original Research