2016
Mitochondria controlled by UCP2 determine hypoxia-induced synaptic remodeling in the cortex and hippocampus
Varela L, Schwartz ML, Horvath TL. Mitochondria controlled by UCP2 determine hypoxia-induced synaptic remodeling in the cortex and hippocampus. Neurobiology Of Disease 2016, 90: 68-74. PMID: 26777666, DOI: 10.1016/j.nbd.2016.01.004.Peer-Reviewed Original ResearchConceptsHippocampal neuronsMitochondria-endoplasmic reticulum interactionUCP2-KO miceEarly postnatal exposureLoss of synapsesOxygen tensionHigher brain regionsAdaptive mitochondrial responsesProtein 2 expressionHypothalamic circuitsPostnatal exposureKO miceSynaptic remodelingSystemic metabolismSynaptic inputsBrain cellsMetabolic controlNeuronal mitochondriaBrain regionsAdaptive responseNeuronsHippocampusMitochondrial dynamicsMetabolic challengesCortex
2002
A1 adenosine receptor activation induces ventriculomegaly and white matter loss
Turner CP, Yan H, Schwartz M, Othman T, Rivkees SA. A1 adenosine receptor activation induces ventriculomegaly and white matter loss. Neuroreport 2002, 13: 1199-1204. PMID: 12151769, DOI: 10.1097/00001756-200207020-00026.Peer-Reviewed Original ResearchMeSH KeywordsAdenosineAnimalsAnimals, NewbornBody WeightCell CountCerebral CortexCerebral VentriclesDrug CombinationsDrug InteractionsGTP-Binding ProteinsGuanosine 5'-O-(3-Thiotriphosphate)HippocampusMicroscopy, ElectronMyelin Basic ProteinNerve DegenerationNerve Fibers, MyelinatedNeurogliaNeuronsPresynaptic TerminalsPurinergic P1 Receptor AgonistsPurinergic P1 Receptor AntagonistsRatsRats, Sprague-DawleyReceptors, Purinergic P1TelencephalonTheophyllineConceptsWhite matter lossAdenosine receptor activationActivation of A1ARPostnatal day 3White matter volumeReceptor-G protein couplingMyelin basic proteinNeuronal lossAgonist treatmentNeonatal ratsN6-cyclopentyladenosineA1AR activationMatter volumeDay 3Adenosine receptorsReceptor activationBrain formationPD 4A1ARReduced expressionProtein couplingQuantitative electron microscopyVentriculomegalyBasic proteinBrain
1993
Cholinergic innervation of the mediodorsal thalamic nucleus in the monkey: Ultrastructural evidence supportive of functional diversity
Schwartz M, Mrzljak L. Cholinergic innervation of the mediodorsal thalamic nucleus in the monkey: Ultrastructural evidence supportive of functional diversity. The Journal Of Comparative Neurology 1993, 327: 48-62. PMID: 8432908, DOI: 10.1002/cne.903270105.Peer-Reviewed Original ResearchConceptsLocal circuit neuronsCell dendritesCircuit neuronsCholinergic innervationSymmetric synapsesImmunoreactive axonsSynaptic profilesMediodorsal thalamic nucleusEnzyme choline acetyltransferaseChAT-immunoreactive axonsFrequency of synapsesAssociation nucleiExtraglomerular neuropilCholinergic inputSynaptic contactsCholine acetyltransferaseThalamic nucleiSynaptic organizationParvicellular divisionElectron microscopic examinationMediodorsal nucleusGlomerular regionPrimate thalamusMacaque monkeysMD nucleus
1991
Dual mode of corticothalamic synaptic termination in the mediodorsal nucleus of the rhesus monkey
Schwartz M, Dekker J, Goldman‐Rakic P. Dual mode of corticothalamic synaptic termination in the mediodorsal nucleus of the rhesus monkey. The Journal Of Comparative Neurology 1991, 309: 289-304. PMID: 1918440, DOI: 10.1002/cne.903090302.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAutoradiographyAxonsCerebral CortexDendritesLeucineMacaca mulattaMicroscopy, ElectronProlineSynapsesThalamusTritiumConceptsPresynaptic dendritesCentral dendriteExtraglomerular neuropilSynaptic contactsMediodorsal nucleusSR terminalsLR terminalsThalamic nucleiCortical inputsSynaptic organizationRound vesiclesRhesus monkeysSynaptic junctionsDistinct synaptic typesPositive labeling indexSymmetric synaptic contactsSymmetric synaptic junctionsAsymmetric synaptic junctionsMediodorsal thalamic nucleusAssociation nuclei