2022
Functional network properties derived from wide-field calcium imaging differ with wakefulness and across cell type
O’Connor D, Mandino F, Shen X, Horien C, Ge X, Herman P, Hyder F, Crair M, Papademetris X, Lake E, Constable. Functional network properties derived from wide-field calcium imaging differ with wakefulness and across cell type. NeuroImage 2022, 264: 119735. PMID: 36347441, PMCID: PMC9808917, DOI: 10.1016/j.neuroimage.2022.119735.Peer-Reviewed Original Research
2020
Simultaneous cortex-wide fluorescence Ca2+ imaging and whole-brain fMRI
Lake EMR, Ge X, Shen X, Herman P, Hyder F, Cardin JA, Higley MJ, Scheinost D, Papademetris X, Crair MC, Constable RT. Simultaneous cortex-wide fluorescence Ca2+ imaging and whole-brain fMRI. Nature Methods 2020, 17: 1262-1271. PMID: 33139894, PMCID: PMC7704940, DOI: 10.1038/s41592-020-00984-6.Peer-Reviewed Original ResearchConceptsOptical measurementsBrain functionTransgenic murine modelFunctional magnetic resonance imagingMagnetic resonance imagingFluorescent measuresWhole-brain fMRIMurine modelResonance imagingFluorescence Ca2Human brain functionConnectivity strengthBOLD signalBrain activityWidefieldLow frequencyImagingModalitiesTransfer functionMeasurementsCortexMesoscopic Imaging: Shining a Wide Light on Large-Scale Neural Dynamics
Cardin JA, Crair MC, Higley MJ. Mesoscopic Imaging: Shining a Wide Light on Large-Scale Neural Dynamics. Neuron 2020, 108: 33-43. PMID: 33058764, PMCID: PMC7577373, DOI: 10.1016/j.neuron.2020.09.031.Peer-Reviewed Original Research
2019
Simultaneous mesoscopic and two-photon imaging of neuronal activity in cortical circuits
Barson D, Hamodi AS, Shen X, Lur G, Constable RT, Cardin JA, Crair MC, Higley MJ. Simultaneous mesoscopic and two-photon imaging of neuronal activity in cortical circuits. Nature Methods 2019, 17: 107-113. PMID: 31686040, PMCID: PMC6946863, DOI: 10.1038/s41592-019-0625-2.Peer-Reviewed Original ResearchConceptsVasoactive intestinal peptide-expressing interneuronsBrain-wide network dynamicsTwo-photon calcium imagingEntire cortical mantleLocal neuronal circuitsLong-range cortical networksWidespread gene deliveryWidefield calciumPyramidal neuronsAwake miceCortical circuitsNeuronal activityCortical mantleTwo-photon imagingViral transduction methodsNeuronal circuitsCalcium imagingMouse brainFunctional connectivityLocal microcircuitsMammalian cortexCortical architectureCortical networksBrainActivity propagates
2017
Reciprocal Connections Between Cortex and Thalamus Contribute to Retinal Axon Targeting to Dorsal Lateral Geniculate Nucleus
Diao Y, Cui L, Chen Y, Burbridge TJ, Han W, Wirth B, Sestan N, Crair MC, Zhang J. Reciprocal Connections Between Cortex and Thalamus Contribute to Retinal Axon Targeting to Dorsal Lateral Geniculate Nucleus. Cerebral Cortex 2017, 28: 1168-1182. PMID: 28334242, PMCID: PMC6059179, DOI: 10.1093/cercor/bhx028.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsAnimals, NewbornAxonsCalciumCholera ToxinDNA-Binding ProteinsEmbryo, MammalianExcitatory Amino Acid AgonistsFeeding BehaviorGene Expression Regulation, DevelopmentalGeniculate BodiesGreen Fluorescent ProteinsHomeodomain ProteinsMiceMice, TransgenicNerve Tissue ProteinsRetinaSerine-Arginine Splicing FactorsSuperior ColliculiTranscription FactorsVisual CortexVisual PathwaysConceptsDorsal lateral geniculate nucleusLateral geniculate nucleusVentral lateral geniculate nucleusGeniculate nucleusRetinal projectionsReciprocal connectionsSuperior colliculusConditional knockoutVivo electrophysiology experimentsAbnormal retinal projectionsPrimary visual cortexDLGN neuronsCorticothalamic inputsControl miceThalamocortical tractV1 lesionsThalamus contributeRetinal innervationThalamocortical projectionsCKO miceMouse modelRetinal inputVisual cortexVisual circuitsAxon targeting
2016
Retinal Wave Patterns Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits
Xu HP, Burbridge TJ, Ye M, Chen M, Ge X, Zhou ZJ, Crair MC. Retinal Wave Patterns Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits. Journal Of Neuroscience 2016, 36: 3871-3886. PMID: 27030771, PMCID: PMC4812142, DOI: 10.1523/jneurosci.3549-15.2016.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAge FactorsAmacrine CellsAnimalsAnimals, NewbornCalciumCholera ToxinCholine O-AcetyltransferaseCholinergic AgentsGene Expression Regulation, DevelopmentalGreen Fluorescent ProteinsIn Vitro TechniquesMiceMice, TransgenicPatch-Clamp TechniquesReceptors, NicotinicRetinaRetinal Ganglion CellsVesicular Glutamate Transport Protein 1Visual PathwaysConceptsEye-specific segregationVisual circuit developmentStarburst amacrine cellsStage III retinal wavesRetinal ganglion cellsRetinal wavesAmacrine cellsGlutamatergic wavesGanglion cellsSpontaneous activityVisual circuitsStage IICircuit developmentHigher-order visual areasNicotinic acetylcholine receptorsRetinal cell typesMammalian visual systemAcetylcholine receptorsΒ2-nAChRsVisual areasPatterned activityPatterning of activityΒ2 subunitCell typesCells
2014
Visual Circuit Development Requires Patterned Activity Mediated by Retinal Acetylcholine Receptors
Burbridge TJ, Xu HP, Ackman JB, Ge X, Zhang Y, Ye MJ, Zhou ZJ, Xu J, Contractor A, Crair MC. Visual Circuit Development Requires Patterned Activity Mediated by Retinal Acetylcholine Receptors. Neuron 2014, 84: 1049-1064. PMID: 25466916, PMCID: PMC4258148, DOI: 10.1016/j.neuron.2014.10.051.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAge FactorsAnalysis of VarianceAnimalsAnimals, NewbornCalciumCyclic AMPCyclic GMPCyclooxygenase InhibitorsEye ProteinsFunctional LateralityHomeodomain ProteinsIn Vitro TechniquesMeclofenamic AcidMiceMice, TransgenicPaired Box Transcription FactorsPAX6 Transcription FactorReceptors, NicotinicRepressor ProteinsRetinaRetinal Ganglion CellsRNA, MessengerVisual PathwaysConceptsRetinal wavesCircuit refinementNervous systemNeural circuitsVisual circuit developmentSpontaneous retinal activityRetinal activityRetinorecipient regionsSpontaneous activityAcetylcholine receptorsPharmacological manipulationVisual circuitsSynaptic connectionsVertebrate nervous systemNeural activityOnset of sensationAltered patternCircuit developmentSensory systemsCausal linkEarly developmentActivityBrainReceptors
2012
Retinal waves coordinate patterned activity throughout the developing visual system
Ackman JB, Burbridge TJ, Crair MC. Retinal waves coordinate patterned activity throughout the developing visual system. Nature 2012, 490: 219-225. PMID: 23060192, PMCID: PMC3962269, DOI: 10.1038/nature11529.Peer-Reviewed Original ResearchConceptsActivity-dependent developmentSpontaneous retinal activityRetinal wavesRetinal activityEntire visual systemPatterned activitySecondary visual areasPrimary visual cortexOnset of visionCholinergic neurotransmissionNeonatal miceNeuronal activitySpontaneous activityNervous systemVisual cortexVertebrate nervous systemVisual areasVisual systemVisual fieldGenetic factorsEye openingFunctional developmentOnsetActivityNeurotransmission
2011
Visual map development depends on the temporal pattern of binocular activity in mice
Zhang J, Ackman JB, Xu HP, Crair MC. Visual map development depends on the temporal pattern of binocular activity in mice. Nature Neuroscience 2011, 15: 298-307. PMID: 22179110, PMCID: PMC3267873, DOI: 10.1038/nn.3007.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsAnimals, NewbornBrain MappingCalciumChannelrhodopsinsCritical Period, PsychologicalFunctional LateralityIn Vitro TechniquesLightLuminescent ProteinsMiceMice, Inbred C57BLMice, TransgenicNeuronal PlasticityPatch-Clamp TechniquesReceptors, NicotinicRetinaRetinal Ganglion CellsSuperior ColliculiTime FactorsVision, BinocularVisual PathwaysConceptsDorsal lateral geniculate nucleusEye-specific segregationSpontaneous retinal wavesLateral geniculate nucleusPrimary visual cortexMouse visual systemBinocular activityRetinal wavesGeniculate nucleusCircuit refinementSuperior colliculusSpecific temporal featuresVisual cortexBursts of activityDefinitive evidenceVisual systemColliculusBinocularityCortexMiceActivity
2006
Role of Efficient Neurotransmitter Release in Barrel Map Development
Lu HC, Butts DA, Kaeser PS, She WC, Janz R, Crair MC. Role of Efficient Neurotransmitter Release in Barrel Map Development. Journal Of Neuroscience 2006, 26: 2692-2703. PMID: 16525048, PMCID: PMC6675166, DOI: 10.1523/jneurosci.3956-05.2006.Peer-Reviewed Original ResearchMeSH KeywordsAdenylyl CyclasesAlpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic AcidAnimalsAnimals, NewbornBlotting, WesternBrain MappingCalciumDizocilpine MaleateDose-Response Relationship, DrugDrug InteractionsElectric StimulationExcitatory Amino Acid AgonistsExcitatory Amino Acid AntagonistsExcitatory Postsynaptic PotentialsGene Expression Regulation, DevelopmentalGTP-Binding ProteinsIn Vitro TechniquesMiceMice, Inbred C57BLMice, KnockoutMice, Mutant StrainsModels, NeurologicalNeural PathwaysNeuronal PlasticityNeurotransmitter AgentsN-MethylaspartatePatch-Clamp TechniquesSomatosensory CortexSynapsinsThalamusTime FactorsConceptsThalamocortical afferentsEfficient neurotransmitter releaseNeurotransmitter releaseBarrelless miceActivity-dependent processesNeuronal circuit formationAdenylyl cyclase IBarrel mapSynaptic transmissionPresynaptic terminalsPresynaptic functionCircuit formationCortical mapsMutant miceMiceNeuronal modulesRelease efficacyEfficient synaptic transmissionActive zone proteinsZone proteinEfficacyMap developmentRIM proteinsAC1 functionRelease
2004
Adenylate Cyclase 1 dependent refinement of retinotopic maps in the mouse
Plas DT, Visel A, Gonzalez E, She WC, Crair MC. Adenylate Cyclase 1 dependent refinement of retinotopic maps in the mouse. Vision Research 2004, 44: 3357-3364. PMID: 15536003, DOI: 10.1016/j.visres.2004.09.036.Peer-Reviewed Original ResearchConceptsAdenylate cyclase 1Retino-collicular pathwayTopographic map refinementActivity-dependent factorsSuperior colliculusRetinotopic mapMutant miceSensory peripheryCellular mechanismsCyclase 1Superficial layersColliculusNeuronal mapsMiceGross topographyLittle evidenceDependent factorsMap refinementBiochemical techniques