2024
Multimodal measures of spontaneous brain activity reveal both common and divergent patterns of cortical functional organization
Vafaii H, Mandino F, Desrosiers-Grégoire G, O’Connor D, Markicevic M, Shen X, Ge X, Herman P, Hyder F, Papademetris X, Chakravarty M, Crair M, Constable R, Lake E, Pessoa L. Multimodal measures of spontaneous brain activity reveal both common and divergent patterns of cortical functional organization. Nature Communications 2024, 15: 229. PMID: 38172111, PMCID: PMC10764905, DOI: 10.1038/s41467-023-44363-z.Peer-Reviewed Original Research
2023
Rapid fluctuations in functional connectivity of cortical networks encode spontaneous behavior
Benisty H, Barson D, Moberly A, Lohani S, Tang L, Coifman R, Crair M, Mishne G, Cardin J, Higley M. Rapid fluctuations in functional connectivity of cortical networks encode spontaneous behavior. Nature Neuroscience 2023, 27: 148-158. PMID: 38036743, PMCID: PMC11316935, DOI: 10.1038/s41593-023-01498-y.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrain MappingMagnetic Resonance ImagingMiceNeocortexNeural PathwaysNeuronsWakefulnessConceptsFunctional connectivitySpontaneous behaviorCortical networksCortical network activityTime-varying functional connectivityFunctional magnetic resonanceCerebral cortexAwake miceDynamic functional connectivityAwake animalsNeighboring neuronsPatterned activityDistinct behavioral statesTwo-photon microscopyNeural activityCortical signalsBehavioral statesCortexNetwork activityCortical dynamicsMagnetic resonance
2020
Simultaneous cortex-wide fluorescence Ca2+ imaging and whole-brain fMRI
Lake EMR, Ge X, Shen X, Herman P, Hyder F, Cardin JA, Higley MJ, Scheinost D, Papademetris X, Crair MC, Constable RT. Simultaneous cortex-wide fluorescence Ca2+ imaging and whole-brain fMRI. Nature Methods 2020, 17: 1262-1271. PMID: 33139894, PMCID: PMC7704940, DOI: 10.1038/s41592-020-00984-6.Peer-Reviewed Original ResearchConceptsOptical measurementsBrain functionTransgenic murine modelFunctional magnetic resonance imagingMagnetic resonance imagingFluorescent measuresWhole-brain fMRIMurine modelResonance imagingFluorescence Ca2Human brain functionConnectivity strengthBOLD signalBrain activityWidefieldLow frequencyImagingModalitiesTransfer functionMeasurementsCortex
2015
Spatial pattern of spontaneous retinal waves instructs retinotopic map refinement more than activity frequency
Xu HP, Burbridge TJ, Chen MG, Ge X, Zhang Y, Zhou ZJ, Crair MC. Spatial pattern of spontaneous retinal waves instructs retinotopic map refinement more than activity frequency. Developmental Neurobiology 2015, 75: 621-640. PMID: 25787992, PMCID: PMC4697738, DOI: 10.1002/dneu.22288.Peer-Reviewed Original ResearchConceptsSpontaneous retinal activityEye-specific segregationRetinal activityRetinal ganglion cell projectionsEye-specific projectionsGanglion cell projectionsPrecise neural connectionsRetinotopic map refinementSpontaneous retinal wavesNicotinic acetylcholine receptorsInstructive roleEye of originRetinal wavesRetinotopic refinementSpontaneous activityRetinotopic mapAcetylcholine receptorsDevelopment of retinotopyBrain wiringPermissive roleMutant miceNeural connectionsOverall activity levelsSpontaneous wavesMice
2013
Role of emergent neural activity in visual map development
Ackman JB, Crair MC. Role of emergent neural activity in visual map development. Current Opinion In Neurobiology 2013, 24: 166-175. PMID: 24492092, PMCID: PMC3957181, DOI: 10.1016/j.conb.2013.11.011.Peer-Reviewed Original ResearchConceptsRetinal wavesNeural activitySpontaneous activityNormal visual functionOnset of visionVisual functionGestational periodCalcium influxFunctional visionLong gestational periodNervous systemVisual circuitsNeurotransmitter releaseNerve cellsAssociative circuitsCircuit connectivitySensory-motor systemEye openingFunctional developmentVisuomotor learningSpecific spatiotemporal patternsSpontaneous patternsExcitable cellsOnsetFuture studies
2012
Synapse maturation is enhanced in the binocular region of the retinocollicular map prior to eye opening
Furman M, Crair MC. Synapse maturation is enhanced in the binocular region of the retinocollicular map prior to eye opening. Journal Of Neurophysiology 2012, 107: 3200-3216. PMID: 22402661, PMCID: PMC3774562, DOI: 10.1152/jn.00943.2011.Peer-Reviewed Original ResearchConceptsSuperior colliculusLateral superior colliculusMedial superior colliculusEye openingP6-7Synaptic strengthBinocular interactionEye-specific segregationPatch-clamp recordingsRetinocollicular synapsesIpsilateral eyeNeonatal miceSlice preparationSynaptic basisMonocular enucleationDendritic arborsSynapse maturationTarget neuronsRetinal axonsDendritic branchingRetinocollicular mapSynaptic connectivityPostsynaptic partnersBinocular competitionSynapse developmentRole of adenylate cyclase 1 in retinofugal map development
Dhande OS, Bhatt S, Anishchenko A, Elstrott J, Iwasato T, Swindell EC, Xu H, Jamrich M, Itohara S, Feller MB, Crair MC. Role of adenylate cyclase 1 in retinofugal map development. The Journal Of Comparative Neurology 2012, 520: 1562-1583. PMID: 22102330, PMCID: PMC3563095, DOI: 10.1002/cne.23000.Peer-Reviewed Original ResearchConceptsLateral geniculate nucleusDorsal lateral geniculate nucleusAdenylate cyclase 1Superior colliculusRetinal wavesRetinal ganglion cell projectionsEye-specific segregationGanglion cell projectionsSpontaneous retinal wavesSecond postnatal weekActivity-dependent processesCyclase 1Production of cAMPRGC axonsGeniculate nucleusPostnatal weekMammalian visual systemDevelopment of retinotopySomatotopic mapMutant miceSensory peripheryMiceConditional deletionTermination zonesDependent manner
2011
Visual map development depends on the temporal pattern of binocular activity in mice
Zhang J, Ackman JB, Xu HP, Crair MC. Visual map development depends on the temporal pattern of binocular activity in mice. Nature Neuroscience 2011, 15: 298-307. PMID: 22179110, PMCID: PMC3267873, DOI: 10.1038/nn.3007.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsAnimals, NewbornBrain MappingCalciumChannelrhodopsinsCritical Period, PsychologicalFunctional LateralityIn Vitro TechniquesLightLuminescent ProteinsMiceMice, Inbred C57BLMice, TransgenicNeuronal PlasticityPatch-Clamp TechniquesReceptors, NicotinicRetinaRetinal Ganglion CellsSuperior ColliculiTime FactorsVision, BinocularVisual PathwaysConceptsDorsal lateral geniculate nucleusEye-specific segregationSpontaneous retinal wavesLateral geniculate nucleusPrimary visual cortexMouse visual systemBinocular activityRetinal wavesGeniculate nucleusCircuit refinementSuperior colliculusSpecific temporal featuresVisual cortexBursts of activityDefinitive evidenceVisual systemColliculusBinocularityCortexMiceActivityAn Instructive Role for Patterned Spontaneous Retinal Activity in Mouse Visual Map Development
Xu HP, Furman M, Mineur YS, Chen H, King SL, Zenisek D, Zhou ZJ, Butts DA, Tian N, Picciotto MR, Crair MC. An Instructive Role for Patterned Spontaneous Retinal Activity in Mouse Visual Map Development. Neuron 2011, 70: 1115-1127. PMID: 21689598, PMCID: PMC3119851, DOI: 10.1016/j.neuron.2011.04.028.Peer-Reviewed Original ResearchConceptsSpontaneous retinal activityRetinal activityRetinal ganglion cell projectionsEye-specific segregationGanglion cell projectionsSpontaneous retinal wavesActivity-dependent refinementRetinal ganglion cellsMouse visual systemComplex neural circuitsEye of originRetinal wavesGanglion cellsRetinotopic refinementNeuronal activitySpontaneous activityMammalian visual systemAcetylcholine receptorsNeuronal connectivityMammalian brainNeural circuitsOverall activity levelsActivity levelsBrainVisual system
2007
Developmental Homeostasis of Mouse Retinocollicular Synapses
Chandrasekaran AR, Shah RD, Crair MC. Developmental Homeostasis of Mouse Retinocollicular Synapses. Journal Of Neuroscience 2007, 27: 1746-1755. PMID: 17301182, PMCID: PMC6673732, DOI: 10.1523/jneurosci.4383-06.2007.Peer-Reviewed Original ResearchMeSH KeywordsAlpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic AcidAnimalsAnimals, NewbornBrain MappingExcitatory Amino Acid AgonistsHomeostasisMembrane PotentialsMiceMice, Inbred C57BLMice, KnockoutModels, BiologicalN-MethylaspartateNeuronsReceptors, NicotinicRetinaSuperior ColliculiSynapsesVisual CortexVisual PathwaysConceptsRetinal wavesBeta2-/- miceSpontaneous retinal wavesRetinal ganglion cellsWild-type miceActivity-dependent competitionFirst postnatal weekTotal integrated responseLarge retinal areasTotal synaptic inputNeuronal receptive fieldsReceptive fieldsGanglion cellsPerturbation of activitiesSynaptic transmissionPostnatal weekResponse homeostasisSynaptic inputsRetinal areaRetinal inputSuperior colliculusStrong synapsesVisual cortexMutant miceRetinotopic mapping
2006
Role of Efficient Neurotransmitter Release in Barrel Map Development
Lu HC, Butts DA, Kaeser PS, She WC, Janz R, Crair MC. Role of Efficient Neurotransmitter Release in Barrel Map Development. Journal Of Neuroscience 2006, 26: 2692-2703. PMID: 16525048, PMCID: PMC6675166, DOI: 10.1523/jneurosci.3956-05.2006.Peer-Reviewed Original ResearchMeSH KeywordsAdenylyl CyclasesAlpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic AcidAnimalsAnimals, NewbornBlotting, WesternBrain MappingCalciumDizocilpine MaleateDose-Response Relationship, DrugDrug InteractionsElectric StimulationExcitatory Amino Acid AgonistsExcitatory Amino Acid AntagonistsExcitatory Postsynaptic PotentialsGene Expression Regulation, DevelopmentalGTP-Binding ProteinsIn Vitro TechniquesMiceMice, Inbred C57BLMice, KnockoutMice, Mutant StrainsModels, NeurologicalNeural PathwaysNeuronal PlasticityNeurotransmitter AgentsN-MethylaspartatePatch-Clamp TechniquesSomatosensory CortexSynapsinsThalamusTime FactorsConceptsThalamocortical afferentsEfficient neurotransmitter releaseNeurotransmitter releaseBarrelless miceActivity-dependent processesNeuronal circuit formationAdenylyl cyclase IBarrel mapSynaptic transmissionPresynaptic terminalsPresynaptic functionCircuit formationCortical mapsMutant miceMiceNeuronal modulesRelease efficacyEfficient synaptic transmissionActive zone proteinsZone proteinEfficacyMap developmentRIM proteinsAC1 functionRelease
2005
Evidence for an Instructive Role of Retinal Activity in Retinotopic Map Refinement in the Superior Colliculus of the Mouse
Chandrasekaran AR, Plas DT, Gonzalez E, Crair MC. Evidence for an Instructive Role of Retinal Activity in Retinotopic Map Refinement in the Superior Colliculus of the Mouse. Journal Of Neuroscience 2005, 25: 6929-6938. PMID: 16033903, PMCID: PMC6725341, DOI: 10.1523/jneurosci.1470-05.2005.Peer-Reviewed Original ResearchConceptsRetinotopic map refinementRetinal activitySuperior colliculusActivity-dependent factorsNasal-temporal axisSpontaneous retinal activityWild-type miceActivity-dependent cuesActivity-dependent mechanismsRetinotopic map developmentAxon guidance cuesGuidance cuesMolecular mechanismsRetinal wavesPharmacological interventionsMouse modelRetinotopic mapColliculusSame animalsMicePreferential roleReceptive fieldsPhysiological methodsInstructive roleMap refinement
2003
Adenylyl cyclase I regulates AMPA receptor trafficking during mouse cortical 'barrel' map development
Lu HC, She WC, Plas DT, Neumann PE, Janz R, Crair MC. Adenylyl cyclase I regulates AMPA receptor trafficking during mouse cortical 'barrel' map development. Nature Neuroscience 2003, 6: 939-947. PMID: 12897788, DOI: 10.1038/nn1106.Peer-Reviewed Original ResearchConceptsLong-term depressionLong-term potentiationAMPA receptor traffickingThalamocortical synapsesBarrelless miceBarrel map formationSynaptic AMPAR traffickingAMPAR subunit GluR1Activity-dependent mechanismsReceptor traffickingAC1 activityFunctional AMPARsSurface GluR1Thalamocortical afferentsMap formationAdenylyl cyclase IBarrel mapSubunit GluR1Cortical map formationAMPAR traffickingProtein kinase A (PKA) activitySynapsesAdenylyl cyclaseMiceImmature state
2001
Barrel Cortex Critical Period Plasticity Is Independent of Changes in NMDA Receptor Subunit Composition
Lu H, Gonzalez E, Crair M. Barrel Cortex Critical Period Plasticity Is Independent of Changes in NMDA Receptor Subunit Composition. Neuron 2001, 32: 619-634. PMID: 11719203, DOI: 10.1016/s0896-6273(01)00501-3.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrain MappingCritical Period, PsychologicalExcitatory Amino Acid AntagonistsExcitatory Postsynaptic PotentialsGene Expression Regulation, DevelopmentalLong-Term PotentiationMiceMice, Inbred C57BLMice, KnockoutNeuronal PlasticityPiperidinesQuinoxalinesReceptors, AMPAReceptors, N-Methyl-D-AspartateSomatosensory CortexSynapsesThalamusConceptsNMDA receptor subunit compositionReceptor subunit compositionSubunit compositionMouse somatosensory barrel cortexCritical periodNR2A knockout miceCritical period plasticitySomatosensory barrel cortexNMDAR subunit compositionCurrent kineticsAfferent innervationBarrel cortexNR2B subunitKnockout miceSynaptic plasticityNR2A subunitPlasticity windowSubunits
2000
Neurotrophin-4/5 Alters Responses and Blocks the Effect of Monocular Deprivation in Cat Visual Cortex during the Critical Period
Gillespie D, Crair M, Stryker M. Neurotrophin-4/5 Alters Responses and Blocks the Effect of Monocular Deprivation in Cat Visual Cortex during the Critical Period. Journal Of Neuroscience 2000, 20: 9174-9186. PMID: 11124995, PMCID: PMC2412905, DOI: 10.1523/jneurosci.20-24-09174.2000.Peer-Reviewed Original ResearchConceptsDeprived eyeVisual cortexNT-4/5Monocular deprivationCritical periodIntrinsic signal optical imagingEarly postnatal lifeCat visual cortexCortical cellsNT-3Ocular dominancePostnatal lifeAlters responsesVisual stimulationCortexCorrelated activityHr exposureNeural responsesStimulus orientationEyesInfusionNeuronsDeprivationResponsePeriod
1998
The Role of Visual Experience in the Development of Columns in Cat Visual Cortex
Crair M, Gillespie D, Stryker M. The Role of Visual Experience in the Development of Columns in Cat Visual Cortex. Science 1998, 279: 566-570. PMID: 9438851, PMCID: PMC2453000, DOI: 10.1126/science.279.5350.566.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrain MappingCatsMicroelectrodesPhotic StimulationVision, MonocularVision, OcularVisual CortexVisual PathwaysConceptsCortical mapsVisual cortexCat visual cortexPrimary visual cortexWeeks of ageTime course parallelContralateral eyeCerebral cortexCortical plasticityCortical neuronsOcular dominanceVisual deprivationPattern visionCortexWeeksEyesVisual experienceCritical periodCourse parallelCatsNeuronsResponse
1997
Relationship between the Ocular Dominance and Orientation Maps in Visual Cortex of Monocularly Deprived Cats
Crair M, Ruthazer E, Gillespie D, Stryker M. Relationship between the Ocular Dominance and Orientation Maps in Visual Cortex of Monocularly Deprived Cats. Neuron 1997, 19: 307-318. PMID: 9292721, DOI: 10.1016/s0896-6273(00)80941-1.Peer-Reviewed Original ResearchConceptsCortical plasticityVisual cortexSame stimulus orientationSingle-unit recordingsStimulus orientationDeprived eyeIntrinsic optical signalsMonocular deprivationOcular dominanceOcular dominance mapsSelective lossOrientation tuningClosed eyesCritical periodCortexEyesNeuronsFunctional mapsBrief periodCompelling evidenceKittensOcular Dominance Peaks at Pinwheel Center Singularities of the Orientation Map in Cat Visual Cortex
Crair M, Ruthazer E, Gillespie D, Stryker M. Ocular Dominance Peaks at Pinwheel Center Singularities of the Orientation Map in Cat Visual Cortex. Journal Of Neurophysiology 1997, 77: 3381-3385. PMID: 9212282, DOI: 10.1152/jn.1997.77.6.3381.Peer-Reviewed Original Research