2021
Efferent feedback controls bilateral auditory spontaneous activity
Wang Y, Sanghvi M, Gribizis A, Zhang Y, Song L, Morley B, Barson DG, Santos-Sacchi J, Navaratnam D, Crair M. Efferent feedback controls bilateral auditory spontaneous activity. Nature Communications 2021, 12: 2449. PMID: 33907194, PMCID: PMC8079389, DOI: 10.1038/s41467-021-22796-8.Peer-Reviewed Original ResearchConceptsSpontaneous activityEfferent modulationEfferent pathwaysMedial olivocochlear systemCentral nervous systemCentral auditory systemInner hair cellsAuditory systemNicotinic acetylcholine receptorsSpontaneous activity patternsOlivocochlear systemHearing onsetEfferent systemChemogenetic experimentsBilateral couplingNervous systemAcetylcholine receptorsCircuit formationEfferent feedbackFiring patternsHair cellsΑ9/Auditory sensitivityBilateral correlationActivity patterns
2014
Structural organization and function of mouse photoreceptor ribbon synapses involve the immunoglobulin protein synaptic cell adhesion molecule 1
Ribic A, Liu X, Crair MC, Biederer T. Structural organization and function of mouse photoreceptor ribbon synapses involve the immunoglobulin protein synaptic cell adhesion molecule 1. The Journal Of Comparative Neurology 2014, 522: 900-920. PMID: 23982969, PMCID: PMC3947154, DOI: 10.1002/cne.23452.Peer-Reviewed Original ResearchMeSH KeywordsAlcohol OxidoreductasesAnalysis of VarianceAnimalsAnimals, NewbornCell Adhesion Molecule-1Cell Adhesion MoleculesCo-Repressor ProteinsDNA-Binding ProteinsElectroretinographyFemaleGene Expression Regulation, DevelopmentalImmunoglobulinsMaleMiceMice, Inbred C57BLMice, KnockoutMicroscopy, ImmunoelectronNerve Tissue ProteinsPhosphoproteinsReceptors, Metabotropic GlutamateRetinaRetinal Rod Photoreceptor CellsSynapsesVesicular Glutamate Transport Protein 1ConceptsCell adhesion molecule-1Adhesion molecule-1Ribbon synapsesKO retinasSynaptic cell adhesion molecule 1Molecule-1Mouse photoreceptor ribbon synapsesInner retinal layersPhotoreceptor ribbon synapsesRod visual pathwayEarly postnatal stagesPlexiform layerKO micePhotoreceptor synapsesSynaptic organizationExcitatory synapsesQuantitative ultrastructural analysisRetinal layersKnockout miceOuter nuclearVisual pathwaySynapse developmentElectroretinogram recordingsPostnatal stagesAdhesion molecules
2012
Role of adenylate cyclase 1 in retinofugal map development
Dhande OS, Bhatt S, Anishchenko A, Elstrott J, Iwasato T, Swindell EC, Xu H, Jamrich M, Itohara S, Feller MB, Crair MC. Role of adenylate cyclase 1 in retinofugal map development. The Journal Of Comparative Neurology 2012, 520: 1562-1583. PMID: 22102330, PMCID: PMC3563095, DOI: 10.1002/cne.23000.Peer-Reviewed Original ResearchConceptsLateral geniculate nucleusDorsal lateral geniculate nucleusAdenylate cyclase 1Superior colliculusRetinal wavesRetinal ganglion cell projectionsEye-specific segregationGanglion cell projectionsSpontaneous retinal wavesSecond postnatal weekActivity-dependent processesCyclase 1Production of cAMPRGC axonsGeniculate nucleusPostnatal weekMammalian visual systemDevelopment of retinotopySomatotopic mapMutant miceSensory peripheryMiceConditional deletionTermination zonesDependent manner
2011
An Instructive Role for Patterned Spontaneous Retinal Activity in Mouse Visual Map Development
Xu HP, Furman M, Mineur YS, Chen H, King SL, Zenisek D, Zhou ZJ, Butts DA, Tian N, Picciotto MR, Crair MC. An Instructive Role for Patterned Spontaneous Retinal Activity in Mouse Visual Map Development. Neuron 2011, 70: 1115-1127. PMID: 21689598, PMCID: PMC3119851, DOI: 10.1016/j.neuron.2011.04.028.Peer-Reviewed Original ResearchConceptsSpontaneous retinal activityRetinal activityRetinal ganglion cell projectionsEye-specific segregationGanglion cell projectionsSpontaneous retinal wavesActivity-dependent refinementRetinal ganglion cellsMouse visual systemComplex neural circuitsEye of originRetinal wavesGanglion cellsRetinotopic refinementNeuronal activitySpontaneous activityMammalian visual systemAcetylcholine receptorsNeuronal connectivityMammalian brainNeural circuitsOverall activity levelsActivity levelsBrainVisual systemDevelopment of Single Retinofugal Axon Arbors in Normal and β2 Knock-Out Mice
Dhande OS, Hua EW, Guh E, Yeh J, Bhatt S, Zhang Y, Ruthazer ES, Feller MB, Crair MC. Development of Single Retinofugal Axon Arbors in Normal and β2 Knock-Out Mice. Journal Of Neuroscience 2011, 31: 3384-3399. PMID: 21368050, PMCID: PMC3060716, DOI: 10.1523/jneurosci.4899-10.2011.Peer-Reviewed Original ResearchConceptsDorsal lateral geniculate nucleusRetinal ganglion cellsSuperior colliculusAxon arborsRetinotopic refinementEye-specific segregationReceptor mutant miceLateral geniculate nucleusActivity-dependent mechanismsNormal developmentWT miceRGC axonsRetinal wavesGanglion cellsGeniculate nucleusMutant miceRole of activityMiceSpecific cuesArborsSparse branchesSame ageLabeling techniqueMaturationDevelopmental period
2010
The Immune Protein CD3ζ Is Required for Normal Development of Neural Circuits in the Retina
Xu HP, Chen H, Ding Q, Xie ZH, Chen L, Diao L, Wang P, Gan L, Crair MC, Tian N. The Immune Protein CD3ζ Is Required for Normal Development of Neural Circuits in the Retina. Neuron 2010, 65: 503-515. PMID: 20188655, PMCID: PMC3037728, DOI: 10.1016/j.neuron.2010.01.035.Peer-Reviewed Original ResearchConceptsEye-specific segregationCentral nervous systemRetinal ganglion cellsDendritic motilitySynaptic activityActivity-dependent synapse formationPossible retinal originRGC axon projectionImmune proteinsImmune-deficient miceDendritic densityGanglion cellsClass I major histocompatibility complex genesRetinal originNervous systemSynapse formationAxon projectionsMHCI receptorNeural circuitsSynaptic wiringSelective defectMajor histocompatibility complex (MHC) genesMiceRetinaNormal development
2009
Consequences of axon guidance defects on the development of retinotopic receptive fields in the mouse colliculus
Chandrasekaran AR, Furuta Y, Crair MC. Consequences of axon guidance defects on the development of retinotopic receptive fields in the mouse colliculus. The Journal Of Physiology 2009, 587: 953-963. PMID: 19153163, PMCID: PMC2673768, DOI: 10.1113/jphysiol.2008.160952.Peer-Reviewed Original ResearchConceptsSuperior colliculusMutant miceBone morphogenetic protein receptorRetinal ganglion cell axonsGuidance moleculesSpontaneous retinal wavesGanglion cell axonsSuperficial superior colliculusReceptive field propertiesRetinotopic receptive fieldsActivity-dependent factorsMore RGCsRetinocollicular projectionRetinal wavesEctopic projectionsVentral retinaCell axonsRetinotopic map formationAnatomical defectsAction potentialsActivity-dependent learning ruleSpontaneous wavesRetinaRGCsMice
2008
Mechanisms of response homeostasis during retinocollicular map formation
Shah RD, Crair MC. Mechanisms of response homeostasis during retinocollicular map formation. The Journal Of Physiology 2008, 586: 4363-4369. PMID: 18617562, PMCID: PMC2614012, DOI: 10.1113/jphysiol.2008.157222.Peer-Reviewed Original ResearchMeSH KeywordsAfferent PathwaysAnimalsHomeostasisMiceMice, KnockoutNeuronal PlasticityRetinal Ganglion CellsSuperior ColliculiSynapsesConceptsResponse homeostasisSynaptic plasticityIntrinsic excitabilityRetinocollicular map formationActivity-dependent developmentMouse superior colliculusHomeostatic plasticity mechanismsTotal synaptic inputReceptive fieldsDifferent mutant miceVisual receptive fieldsStrength of synapsesDifferent cellular mechanismsHebbian synaptic plasticityNeuronal outputSynaptic inputsSuperior colliculusRunaway excitationSynaptic scalingMutant miceNeural circuitsFunctional connectivityIndividual neuronsHomeostatic mechanismsCellular mechanismsCortical Adenylyl Cyclase 1 Is Required for Thalamocortical Synapse Maturation and Aspects of Layer IV Barrel Development
Iwasato T, Inan M, Kanki H, Erzurumlu RS, Itohara S, Crair MC. Cortical Adenylyl Cyclase 1 Is Required for Thalamocortical Synapse Maturation and Aspects of Layer IV Barrel Development. Journal Of Neuroscience 2008, 28: 5931-5943. PMID: 18524897, PMCID: PMC2733830, DOI: 10.1523/jneurosci.0815-08.2008.Peer-Reviewed Original ResearchConceptsTC synapsesLayer IV barrel neuronsCritical period plasticityPrimary somatosensory cortexFormation of barrelsAdenylyl cyclase 1Knock-out (KO) miceType 1 adenylyl cyclaseDendritic asymmetryBarrel neuronsThalamocortical synapsesActivity-dependent mannerTrigeminal pathwayFormation of cAMPSomatosensory cortexBarrel cortexBarrel developmentSynapse maturationPresynaptic maturationBarrel hollowsTC axonsSubcortical regionsFunctional maturationMutant miceBRL miceRetinocollicular Synapse Maturation and Plasticity Are Regulated by Correlated Retinal Waves
Shah RD, Crair MC. Retinocollicular Synapse Maturation and Plasticity Are Regulated by Correlated Retinal Waves. Journal Of Neuroscience 2008, 28: 292-303. PMID: 18171946, PMCID: PMC6671137, DOI: 10.1523/jneurosci.4276-07.2008.Peer-Reviewed Original ResearchMeSH KeywordsAge FactorsAlpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic AcidAnimalsAnimals, NewbornBehavior, AnimalDose-Response Relationship, RadiationElectric StimulationExcitatory Amino Acid AntagonistsIn Vitro TechniquesMiceMice, KnockoutN-MethylaspartateNeuronal PlasticityPatch-Clamp TechniquesQuinoxalinesReceptors, NicotinicRetinaSuperior ColliculiSynapsesSynaptic TransmissionVisual PathwaysConceptsFirst postnatal weekRetinal wavesPostnatal weekSynapse maturationAMPA/NMDA ratioRetinotopic map refinementSpontaneous retinal wavesNicotinic ACh receptorsSecond postnatal weekRetinocollicular synapsesSynapses decreasesPattern of activationNMDA ratioSynaptic strengtheningACh receptorsQuantal amplitudeRetinotopic map formationSuperior colliculusControl synapsesSynaptic changesCoincident activityPlasticity protocolsFirst weekBeta2 subunitWeeks
2007
Increased Thalamocortical Synaptic Response and Decreased Layer IV Innervation in GAP-43 Knockout Mice
Albright MJ, Weston MC, Inan M, Rosenmund C, Crair MC. Increased Thalamocortical Synaptic Response and Decreased Layer IV Innervation in GAP-43 Knockout Mice. Journal Of Neurophysiology 2007, 98: 1610-1625. PMID: 17581849, DOI: 10.1152/jn.00219.2007.Peer-Reviewed Original ResearchConceptsExcitatory postsynaptic potentialsField excitatory postsynaptic potentialsGAP-43Thalamocortical synapsesSynaptic responsesCompetitive glutamate receptor antagonistN-methyl-D-aspartate receptorsAcute brain slice preparationBarrel map formationThalamocortical synaptic responsesWild-type littermate controlsGlutamate receptor antagonistsBrain slice preparationGrowth-associated proteinThalamic innervationThalamic neuronsBarrel mapReceptor antagonistIsoxazolepropionate (AMPA) receptorsPostsynaptic potentialsLayer IVSlice preparationBarrel cortexSynaptic transmissionAMPAR functionDevelopmental Homeostasis of Mouse Retinocollicular Synapses
Chandrasekaran AR, Shah RD, Crair MC. Developmental Homeostasis of Mouse Retinocollicular Synapses. Journal Of Neuroscience 2007, 27: 1746-1755. PMID: 17301182, PMCID: PMC6673732, DOI: 10.1523/jneurosci.4383-06.2007.Peer-Reviewed Original ResearchMeSH KeywordsAlpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic AcidAnimalsAnimals, NewbornBrain MappingExcitatory Amino Acid AgonistsHomeostasisMembrane PotentialsMiceMice, Inbred C57BLMice, KnockoutModels, BiologicalN-MethylaspartateNeuronsReceptors, NicotinicRetinaSuperior ColliculiSynapsesVisual CortexVisual PathwaysConceptsRetinal wavesBeta2-/- miceSpontaneous retinal wavesRetinal ganglion cellsWild-type miceActivity-dependent competitionFirst postnatal weekTotal integrated responseLarge retinal areasTotal synaptic inputNeuronal receptive fieldsReceptive fieldsGanglion cellsPerturbation of activitiesSynaptic transmissionPostnatal weekResponse homeostasisSynaptic inputsRetinal areaRetinal inputSuperior colliculusStrong synapsesVisual cortexMutant miceRetinotopic mapping
2006
Barrel Map Development Relies on Protein Kinase A Regulatory Subunit IIβ-Mediated cAMP Signaling
Inan M, Lu HC, Albright MJ, She WC, Crair MC. Barrel Map Development Relies on Protein Kinase A Regulatory Subunit IIβ-Mediated cAMP Signaling. Journal Of Neuroscience 2006, 26: 4338-4349. PMID: 16624954, PMCID: PMC6674004, DOI: 10.1523/jneurosci.3745-05.2006.Peer-Reviewed Original ResearchConceptsBarrel map formationLayer IV neuronsActivity-dependent developmentAMPA receptor functionCAMP/PKA-dependent pathwayLong-term potentiationThalamocortical synapsesThalamocortical afferentsTC synapsesThalamocortical synapseBarrel cortexPKA targetsBarrel patternCortical developmentPKA-dependent pathwayBrain circuitryPostsynaptic processesSynapse formationReceptor functionCAMP-dependent protein kinaseHebbian mechanismsDevelopmental increaseMiceSynapsesActivity-dependent modelsRole of Efficient Neurotransmitter Release in Barrel Map Development
Lu HC, Butts DA, Kaeser PS, She WC, Janz R, Crair MC. Role of Efficient Neurotransmitter Release in Barrel Map Development. Journal Of Neuroscience 2006, 26: 2692-2703. PMID: 16525048, PMCID: PMC6675166, DOI: 10.1523/jneurosci.3956-05.2006.Peer-Reviewed Original ResearchMeSH KeywordsAdenylyl CyclasesAlpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic AcidAnimalsAnimals, NewbornBlotting, WesternBrain MappingCalciumDizocilpine MaleateDose-Response Relationship, DrugDrug InteractionsElectric StimulationExcitatory Amino Acid AgonistsExcitatory Amino Acid AntagonistsExcitatory Postsynaptic PotentialsGene Expression Regulation, DevelopmentalGTP-Binding ProteinsIn Vitro TechniquesMiceMice, Inbred C57BLMice, KnockoutMice, Mutant StrainsModels, NeurologicalNeural PathwaysNeuronal PlasticityNeurotransmitter AgentsN-MethylaspartatePatch-Clamp TechniquesSomatosensory CortexSynapsinsThalamusTime FactorsConceptsThalamocortical afferentsEfficient neurotransmitter releaseNeurotransmitter releaseBarrelless miceActivity-dependent processesNeuronal circuit formationAdenylyl cyclase IBarrel mapSynaptic transmissionPresynaptic terminalsPresynaptic functionCircuit formationCortical mapsMutant miceMiceNeuronal modulesRelease efficacyEfficient synaptic transmissionActive zone proteinsZone proteinEfficacyMap developmentRIM proteinsAC1 functionRelease
2002
Brn3b/Brn3c double knockout mice reveal an unsuspected role for Brn3c in retinal ganglion cell axon outgrowth.
Wang SW, Mu X, Bowers WJ, Kim DS, Plas DJ, Crair MC, Federoff HJ, Gan L, Klein WH. Brn3b/Brn3c double knockout mice reveal an unsuspected role for Brn3c in retinal ganglion cell axon outgrowth. Development 2002, 129: 467-77. PMID: 11807038, DOI: 10.1242/dev.129.2.467.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsCell DifferentiationCulture TechniquesDNA-Binding ProteinsFemaleGene TargetingHumansMaleMiceMice, KnockoutMicroscopy, FluorescenceNeuritesRetinaRetinal Ganglion CellsTranscription Factor Brn-3Transcription Factor Brn-3ATranscription Factor Brn-3BTranscription Factor Brn-3CTranscription FactorsConceptsDouble knockout miceGanglion cell differentiationRetinal ganglion cell differentiationRetinal ganglion cellsOptic chiasmKnockout miceGanglion cellsMost retinal ganglion cellsRetinal ganglion cell axonsRetinal ganglion cell developmentGanglion cell axonsAxon outgrowthGanglion cell developmentCell differentiationDorsal rootsProjection neuronsTrigeminal ganglionCell axonsRetinal explantsPOU domain transcription factorBrn3bBrn3cMiceChiasmInner ear
2001
Barrel Cortex Critical Period Plasticity Is Independent of Changes in NMDA Receptor Subunit Composition
Lu H, Gonzalez E, Crair M. Barrel Cortex Critical Period Plasticity Is Independent of Changes in NMDA Receptor Subunit Composition. Neuron 2001, 32: 619-634. PMID: 11719203, DOI: 10.1016/s0896-6273(01)00501-3.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrain MappingCritical Period, PsychologicalExcitatory Amino Acid AntagonistsExcitatory Postsynaptic PotentialsGene Expression Regulation, DevelopmentalLong-Term PotentiationMiceMice, Inbred C57BLMice, KnockoutNeuronal PlasticityPiperidinesQuinoxalinesReceptors, AMPAReceptors, N-Methyl-D-AspartateSomatosensory CortexSynapsesThalamusConceptsNMDA receptor subunit compositionReceptor subunit compositionSubunit compositionMouse somatosensory barrel cortexCritical periodNR2A knockout miceCritical period plasticitySomatosensory barrel cortexNMDAR subunit compositionCurrent kineticsAfferent innervationBarrel cortexNR2B subunitKnockout miceSynaptic plasticityNR2A subunitPlasticity windowSubunits
1999
Neuronal activity during development: permissive or instructive?
Crair M. Neuronal activity during development: permissive or instructive? Current Opinion In Neurobiology 1999, 9: 88-93. PMID: 10072369, DOI: 10.1016/s0959-4388(99)80011-7.Peer-Reviewed Original Research