2024
Hebbian instruction of axonal connectivity by endogenous correlated spontaneous activity
Matsumoto N, Barson D, Liang L, Crair M. Hebbian instruction of axonal connectivity by endogenous correlated spontaneous activity. Science 2024, 385: eadh7814. PMID: 39146415, DOI: 10.1126/science.adh7814.Peer-Reviewed Original ResearchConceptsSpontaneous activitySpontaneous retinal wavesAxonal connectionsPatterns of correlated activityNeonatal miceEvidence in vivoRetinal wavesPostsynaptic neuronsNeuronal activityIn vivoAxonal arborsAxonal processesAxonsRetinocollicular axonsNeural connectionsIndividual axonsMorphological changesSubcellular precisionEndogenous pattern
2021
Retinal waves prime visual motion detection by simulating future optic flow
Ge X, Zhang K, Gribizis A, Hamodi AS, Sabino AM, Crair MC. Retinal waves prime visual motion detection by simulating future optic flow. Science 2021, 373 PMID: 34437090, PMCID: PMC8841103, DOI: 10.1126/science.abd0830.Peer-Reviewed Original ResearchConceptsEye-specific segregationSpontaneous retinal wavesVisual response propertiesSpontaneous retinal activityDirection-selective responsesSuperior colliculus neuronsOptic flow patternsRetinal wavesRetinal activityColliculus neuronsRetinal circuitsSpontaneous activityChronic disruptionVisual motion detectionEye openingTransient windowResponse propertiesOptic flowSensory experienceNeurons
2016
Retinal Wave Patterns Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits
Xu HP, Burbridge TJ, Ye M, Chen M, Ge X, Zhou ZJ, Crair MC. Retinal Wave Patterns Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits. Journal Of Neuroscience 2016, 36: 3871-3886. PMID: 27030771, PMCID: PMC4812142, DOI: 10.1523/jneurosci.3549-15.2016.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAge FactorsAmacrine CellsAnimalsAnimals, NewbornCalciumCholera ToxinCholine O-AcetyltransferaseCholinergic AgentsGene Expression Regulation, DevelopmentalGreen Fluorescent ProteinsIn Vitro TechniquesMiceMice, TransgenicPatch-Clamp TechniquesReceptors, NicotinicRetinaRetinal Ganglion CellsVesicular Glutamate Transport Protein 1Visual PathwaysConceptsEye-specific segregationVisual circuit developmentStarburst amacrine cellsStage III retinal wavesRetinal ganglion cellsRetinal wavesAmacrine cellsGlutamatergic wavesGanglion cellsSpontaneous activityVisual circuitsStage IICircuit developmentHigher-order visual areasNicotinic acetylcholine receptorsRetinal cell typesMammalian visual systemAcetylcholine receptorsΒ2-nAChRsVisual areasPatterned activityPatterning of activityΒ2 subunitCell typesCells
2015
Spatial pattern of spontaneous retinal waves instructs retinotopic map refinement more than activity frequency
Xu HP, Burbridge TJ, Chen MG, Ge X, Zhang Y, Zhou ZJ, Crair MC. Spatial pattern of spontaneous retinal waves instructs retinotopic map refinement more than activity frequency. Developmental Neurobiology 2015, 75: 621-640. PMID: 25787992, PMCID: PMC4697738, DOI: 10.1002/dneu.22288.Peer-Reviewed Original ResearchConceptsSpontaneous retinal activityEye-specific segregationRetinal activityRetinal ganglion cell projectionsEye-specific projectionsGanglion cell projectionsPrecise neural connectionsRetinotopic map refinementSpontaneous retinal wavesNicotinic acetylcholine receptorsInstructive roleEye of originRetinal wavesRetinotopic refinementSpontaneous activityRetinotopic mapAcetylcholine receptorsDevelopment of retinotopyBrain wiringPermissive roleMutant miceNeural connectionsOverall activity levelsSpontaneous wavesMice
2014
Visual Circuit Development Requires Patterned Activity Mediated by Retinal Acetylcholine Receptors
Burbridge TJ, Xu HP, Ackman JB, Ge X, Zhang Y, Ye MJ, Zhou ZJ, Xu J, Contractor A, Crair MC. Visual Circuit Development Requires Patterned Activity Mediated by Retinal Acetylcholine Receptors. Neuron 2014, 84: 1049-1064. PMID: 25466916, PMCID: PMC4258148, DOI: 10.1016/j.neuron.2014.10.051.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAge FactorsAnalysis of VarianceAnimalsAnimals, NewbornCalciumCyclic AMPCyclic GMPCyclooxygenase InhibitorsEye ProteinsFunctional LateralityHomeodomain ProteinsIn Vitro TechniquesMeclofenamic AcidMiceMice, TransgenicPaired Box Transcription FactorsPAX6 Transcription FactorReceptors, NicotinicRepressor ProteinsRetinaRetinal Ganglion CellsRNA, MessengerVisual PathwaysConceptsRetinal wavesCircuit refinementNervous systemNeural circuitsVisual circuit developmentSpontaneous retinal activityRetinal activityRetinorecipient regionsSpontaneous activityAcetylcholine receptorsPharmacological manipulationVisual circuitsSynaptic connectionsVertebrate nervous systemNeural activityOnset of sensationAltered patternCircuit developmentSensory systemsCausal linkEarly developmentActivityBrainReceptors
2013
Role of emergent neural activity in visual map development
Ackman JB, Crair MC. Role of emergent neural activity in visual map development. Current Opinion In Neurobiology 2013, 24: 166-175. PMID: 24492092, PMCID: PMC3957181, DOI: 10.1016/j.conb.2013.11.011.Peer-Reviewed Original ResearchConceptsRetinal wavesNeural activitySpontaneous activityNormal visual functionOnset of visionVisual functionGestational periodCalcium influxFunctional visionLong gestational periodNervous systemVisual circuitsNeurotransmitter releaseNerve cellsAssociative circuitsCircuit connectivitySensory-motor systemEye openingFunctional developmentVisuomotor learningSpecific spatiotemporal patternsSpontaneous patternsExcitable cellsOnsetFuture studiesCompetition driven by retinal waves promotes morphological and functional synaptic development of neurons in the superior colliculus
Furman M, Xu HP, Crair MC. Competition driven by retinal waves promotes morphological and functional synaptic development of neurons in the superior colliculus. Journal Of Neurophysiology 2013, 110: 1441-1454. PMID: 23741047, PMCID: PMC3763158, DOI: 10.1152/jn.01066.2012.Peer-Reviewed Original ResearchConceptsSuperior colliculusRetinal wavesRetinal inputBrain slice preparationActivity-dependent competitionWT miceRetinofugal axonsSlice preparationSC neuronsTransgenic miceBrain regionsSynaptic strengthSynaptic developmentSynapse developmentMiceNeuronsEye openingFunctional developmentSynapsesColliculusMolecular mechanismsSpecific roleInstructive roleMorphological developmentAxons
2012
Retinal waves coordinate patterned activity throughout the developing visual system
Ackman JB, Burbridge TJ, Crair MC. Retinal waves coordinate patterned activity throughout the developing visual system. Nature 2012, 490: 219-225. PMID: 23060192, PMCID: PMC3962269, DOI: 10.1038/nature11529.Peer-Reviewed Original ResearchConceptsActivity-dependent developmentSpontaneous retinal activityRetinal wavesRetinal activityEntire visual systemPatterned activitySecondary visual areasPrimary visual cortexOnset of visionCholinergic neurotransmissionNeonatal miceNeuronal activitySpontaneous activityNervous systemVisual cortexVertebrate nervous systemVisual areasVisual systemVisual fieldGenetic factorsEye openingFunctional developmentOnsetActivityNeurotransmissionRole of adenylate cyclase 1 in retinofugal map development
Dhande OS, Bhatt S, Anishchenko A, Elstrott J, Iwasato T, Swindell EC, Xu H, Jamrich M, Itohara S, Feller MB, Crair MC. Role of adenylate cyclase 1 in retinofugal map development. The Journal Of Comparative Neurology 2012, 520: 1562-1583. PMID: 22102330, PMCID: PMC3563095, DOI: 10.1002/cne.23000.Peer-Reviewed Original ResearchConceptsLateral geniculate nucleusDorsal lateral geniculate nucleusAdenylate cyclase 1Superior colliculusRetinal wavesRetinal ganglion cell projectionsEye-specific segregationGanglion cell projectionsSpontaneous retinal wavesSecond postnatal weekActivity-dependent processesCyclase 1Production of cAMPRGC axonsGeniculate nucleusPostnatal weekMammalian visual systemDevelopment of retinotopySomatotopic mapMutant miceSensory peripheryMiceConditional deletionTermination zonesDependent manner
2011
Visual map development depends on the temporal pattern of binocular activity in mice
Zhang J, Ackman JB, Xu HP, Crair MC. Visual map development depends on the temporal pattern of binocular activity in mice. Nature Neuroscience 2011, 15: 298-307. PMID: 22179110, PMCID: PMC3267873, DOI: 10.1038/nn.3007.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsAnimals, NewbornBrain MappingCalciumChannelrhodopsinsCritical Period, PsychologicalFunctional LateralityIn Vitro TechniquesLightLuminescent ProteinsMiceMice, Inbred C57BLMice, TransgenicNeuronal PlasticityPatch-Clamp TechniquesReceptors, NicotinicRetinaRetinal Ganglion CellsSuperior ColliculiTime FactorsVision, BinocularVisual PathwaysConceptsDorsal lateral geniculate nucleusEye-specific segregationSpontaneous retinal wavesLateral geniculate nucleusPrimary visual cortexMouse visual systemBinocular activityRetinal wavesGeniculate nucleusCircuit refinementSuperior colliculusSpecific temporal featuresVisual cortexBursts of activityDefinitive evidenceVisual systemColliculusBinocularityCortexMiceActivityAn Instructive Role for Patterned Spontaneous Retinal Activity in Mouse Visual Map Development
Xu HP, Furman M, Mineur YS, Chen H, King SL, Zenisek D, Zhou ZJ, Butts DA, Tian N, Picciotto MR, Crair MC. An Instructive Role for Patterned Spontaneous Retinal Activity in Mouse Visual Map Development. Neuron 2011, 70: 1115-1127. PMID: 21689598, PMCID: PMC3119851, DOI: 10.1016/j.neuron.2011.04.028.Peer-Reviewed Original ResearchConceptsSpontaneous retinal activityRetinal activityRetinal ganglion cell projectionsEye-specific segregationGanglion cell projectionsSpontaneous retinal wavesActivity-dependent refinementRetinal ganglion cellsMouse visual systemComplex neural circuitsEye of originRetinal wavesGanglion cellsRetinotopic refinementNeuronal activitySpontaneous activityMammalian visual systemAcetylcholine receptorsNeuronal connectivityMammalian brainNeural circuitsOverall activity levelsActivity levelsBrainVisual systemDevelopment of Single Retinofugal Axon Arbors in Normal and β2 Knock-Out Mice
Dhande OS, Hua EW, Guh E, Yeh J, Bhatt S, Zhang Y, Ruthazer ES, Feller MB, Crair MC. Development of Single Retinofugal Axon Arbors in Normal and β2 Knock-Out Mice. Journal Of Neuroscience 2011, 31: 3384-3399. PMID: 21368050, PMCID: PMC3060716, DOI: 10.1523/jneurosci.4899-10.2011.Peer-Reviewed Original ResearchConceptsDorsal lateral geniculate nucleusRetinal ganglion cellsSuperior colliculusAxon arborsRetinotopic refinementEye-specific segregationReceptor mutant miceLateral geniculate nucleusActivity-dependent mechanismsNormal developmentWT miceRGC axonsRetinal wavesGanglion cellsGeniculate nucleusMutant miceRole of activityMiceSpecific cuesArborsSparse branchesSame ageLabeling techniqueMaturationDevelopmental period
2009
Consequences of axon guidance defects on the development of retinotopic receptive fields in the mouse colliculus
Chandrasekaran AR, Furuta Y, Crair MC. Consequences of axon guidance defects on the development of retinotopic receptive fields in the mouse colliculus. The Journal Of Physiology 2009, 587: 953-963. PMID: 19153163, PMCID: PMC2673768, DOI: 10.1113/jphysiol.2008.160952.Peer-Reviewed Original ResearchConceptsSuperior colliculusMutant miceBone morphogenetic protein receptorRetinal ganglion cell axonsGuidance moleculesSpontaneous retinal wavesGanglion cell axonsSuperficial superior colliculusReceptive field propertiesRetinotopic receptive fieldsActivity-dependent factorsMore RGCsRetinocollicular projectionRetinal wavesEctopic projectionsVentral retinaCell axonsRetinotopic map formationAnatomical defectsAction potentialsActivity-dependent learning ruleSpontaneous wavesRetinaRGCsMice
2008
Retinocollicular Synapse Maturation and Plasticity Are Regulated by Correlated Retinal Waves
Shah RD, Crair MC. Retinocollicular Synapse Maturation and Plasticity Are Regulated by Correlated Retinal Waves. Journal Of Neuroscience 2008, 28: 292-303. PMID: 18171946, PMCID: PMC6671137, DOI: 10.1523/jneurosci.4276-07.2008.Peer-Reviewed Original ResearchMeSH KeywordsAge FactorsAlpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic AcidAnimalsAnimals, NewbornBehavior, AnimalDose-Response Relationship, RadiationElectric StimulationExcitatory Amino Acid AntagonistsIn Vitro TechniquesMiceMice, KnockoutN-MethylaspartateNeuronal PlasticityPatch-Clamp TechniquesQuinoxalinesReceptors, NicotinicRetinaSuperior ColliculiSynapsesSynaptic TransmissionVisual PathwaysConceptsFirst postnatal weekRetinal wavesPostnatal weekSynapse maturationAMPA/NMDA ratioRetinotopic map refinementSpontaneous retinal wavesNicotinic ACh receptorsSecond postnatal weekRetinocollicular synapsesSynapses decreasesPattern of activationNMDA ratioSynaptic strengtheningACh receptorsQuantal amplitudeRetinotopic map formationSuperior colliculusControl synapsesSynaptic changesCoincident activityPlasticity protocolsFirst weekBeta2 subunitWeeks
2007
Developmental Homeostasis of Mouse Retinocollicular Synapses
Chandrasekaran AR, Shah RD, Crair MC. Developmental Homeostasis of Mouse Retinocollicular Synapses. Journal Of Neuroscience 2007, 27: 1746-1755. PMID: 17301182, PMCID: PMC6673732, DOI: 10.1523/jneurosci.4383-06.2007.Peer-Reviewed Original ResearchMeSH KeywordsAlpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic AcidAnimalsAnimals, NewbornBrain MappingExcitatory Amino Acid AgonistsHomeostasisMembrane PotentialsMiceMice, Inbred C57BLMice, KnockoutModels, BiologicalN-MethylaspartateNeuronsReceptors, NicotinicRetinaSuperior ColliculiSynapsesVisual CortexVisual PathwaysConceptsRetinal wavesBeta2-/- miceSpontaneous retinal wavesRetinal ganglion cellsWild-type miceActivity-dependent competitionFirst postnatal weekTotal integrated responseLarge retinal areasTotal synaptic inputNeuronal receptive fieldsReceptive fieldsGanglion cellsPerturbation of activitiesSynaptic transmissionPostnatal weekResponse homeostasisSynaptic inputsRetinal areaRetinal inputSuperior colliculusStrong synapsesVisual cortexMutant miceRetinotopic mapping
2005
Evidence for an Instructive Role of Retinal Activity in Retinotopic Map Refinement in the Superior Colliculus of the Mouse
Chandrasekaran AR, Plas DT, Gonzalez E, Crair MC. Evidence for an Instructive Role of Retinal Activity in Retinotopic Map Refinement in the Superior Colliculus of the Mouse. Journal Of Neuroscience 2005, 25: 6929-6938. PMID: 16033903, PMCID: PMC6725341, DOI: 10.1523/jneurosci.1470-05.2005.Peer-Reviewed Original ResearchConceptsRetinotopic map refinementRetinal activitySuperior colliculusActivity-dependent factorsNasal-temporal axisSpontaneous retinal activityWild-type miceActivity-dependent cuesActivity-dependent mechanismsRetinotopic map developmentAxon guidance cuesGuidance cuesMolecular mechanismsRetinal wavesPharmacological interventionsMouse modelRetinotopic mapColliculusSame animalsMicePreferential roleReceptive fieldsPhysiological methodsInstructive roleMap refinement