2021
Preservation of vision after CaMKII-mediated protection of retinal ganglion cells
Guo X, Zhou J, Starr C, Mohns EJ, Li Y, Chen EP, Yoon Y, Kellner CP, Tanaka K, Wang H, Liu W, Pasquale LR, Demb JB, Crair MC, Chen B. Preservation of vision after CaMKII-mediated protection of retinal ganglion cells. Cell 2021, 184: 4299-4314.e12. PMID: 34297923, PMCID: PMC8530265, DOI: 10.1016/j.cell.2021.06.031.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsBrainCalcium-Calmodulin-Dependent Protein Kinase Type 2Cyclic AMP Response Element-Binding ProteinCytoprotectionDependovirusDisease Models, AnimalEnzyme ActivationGlaucomaMice, Inbred C57BLNeurotoxinsOptic Nerve InjuriesRetinal Ganglion CellsSignal TransductionVision, OcularConceptsRetinal ganglion cellsRGC survivalRGC somataGanglion cellsDiverse insultsRGC axon projectionOptic nerve injurySole output neuronsPreservation of visionElevated intraocular pressureIrreversible vision lossPathological statesExcitotoxic injuryNerve injuryGlaucoma modelIntraocular pressureRGC axonsVision lossVisual functionNormal retinaVisual cortexAxon projectionsGenetic deficiencyInjuryRetina
2016
Reconnecting Eye to Brain
Crair MC, Mason CA. Reconnecting Eye to Brain. Journal Of Neuroscience 2016, 36: 10707-10722. PMID: 27798125, PMCID: PMC5083002, DOI: 10.1523/jneurosci.1711-16.2016.Peer-Reviewed Original ResearchConceptsAudacious Goals InitiativeNational Eye InstituteRetinal ganglion cellsSystem regenerationEye InstituteGanglion cellsVisual functionTraumatic injuryVisual system functionNeural regenerationTarget engagementDisease-induced degenerationRegenerative capacityVisual systemAxon guidanceSystem functionSignificant barriersCurrent understandingSatellite meetingInjuryAxonsDegenerationNeuronsBrainRetinal Wave Patterns Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits
Xu HP, Burbridge TJ, Ye M, Chen M, Ge X, Zhou ZJ, Crair MC. Retinal Wave Patterns Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits. Journal Of Neuroscience 2016, 36: 3871-3886. PMID: 27030771, PMCID: PMC4812142, DOI: 10.1523/jneurosci.3549-15.2016.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAge FactorsAmacrine CellsAnimalsAnimals, NewbornCalciumCholera ToxinCholine O-AcetyltransferaseCholinergic AgentsGene Expression Regulation, DevelopmentalGreen Fluorescent ProteinsIn Vitro TechniquesMiceMice, TransgenicPatch-Clamp TechniquesReceptors, NicotinicRetinaRetinal Ganglion CellsVesicular Glutamate Transport Protein 1Visual PathwaysConceptsEye-specific segregationVisual circuit developmentStarburst amacrine cellsStage III retinal wavesRetinal ganglion cellsRetinal wavesAmacrine cellsGlutamatergic wavesGanglion cellsSpontaneous activityVisual circuitsStage IICircuit developmentHigher-order visual areasNicotinic acetylcholine receptorsRetinal cell typesMammalian visual systemAcetylcholine receptorsΒ2-nAChRsVisual areasPatterned activityPatterning of activityΒ2 subunitCell typesCells
2011
An Instructive Role for Patterned Spontaneous Retinal Activity in Mouse Visual Map Development
Xu HP, Furman M, Mineur YS, Chen H, King SL, Zenisek D, Zhou ZJ, Butts DA, Tian N, Picciotto MR, Crair MC. An Instructive Role for Patterned Spontaneous Retinal Activity in Mouse Visual Map Development. Neuron 2011, 70: 1115-1127. PMID: 21689598, PMCID: PMC3119851, DOI: 10.1016/j.neuron.2011.04.028.Peer-Reviewed Original ResearchConceptsSpontaneous retinal activityRetinal activityRetinal ganglion cell projectionsEye-specific segregationGanglion cell projectionsSpontaneous retinal wavesActivity-dependent refinementRetinal ganglion cellsMouse visual systemComplex neural circuitsEye of originRetinal wavesGanglion cellsRetinotopic refinementNeuronal activitySpontaneous activityMammalian visual systemAcetylcholine receptorsNeuronal connectivityMammalian brainNeural circuitsOverall activity levelsActivity levelsBrainVisual systemDevelopment of Single Retinofugal Axon Arbors in Normal and β2 Knock-Out Mice
Dhande OS, Hua EW, Guh E, Yeh J, Bhatt S, Zhang Y, Ruthazer ES, Feller MB, Crair MC. Development of Single Retinofugal Axon Arbors in Normal and β2 Knock-Out Mice. Journal Of Neuroscience 2011, 31: 3384-3399. PMID: 21368050, PMCID: PMC3060716, DOI: 10.1523/jneurosci.4899-10.2011.Peer-Reviewed Original ResearchConceptsDorsal lateral geniculate nucleusRetinal ganglion cellsSuperior colliculusAxon arborsRetinotopic refinementEye-specific segregationReceptor mutant miceLateral geniculate nucleusActivity-dependent mechanismsNormal developmentWT miceRGC axonsRetinal wavesGanglion cellsGeniculate nucleusMutant miceRole of activityMiceSpecific cuesArborsSparse branchesSame ageLabeling techniqueMaturationDevelopmental period
2010
The Immune Protein CD3ζ Is Required for Normal Development of Neural Circuits in the Retina
Xu HP, Chen H, Ding Q, Xie ZH, Chen L, Diao L, Wang P, Gan L, Crair MC, Tian N. The Immune Protein CD3ζ Is Required for Normal Development of Neural Circuits in the Retina. Neuron 2010, 65: 503-515. PMID: 20188655, PMCID: PMC3037728, DOI: 10.1016/j.neuron.2010.01.035.Peer-Reviewed Original ResearchConceptsEye-specific segregationCentral nervous systemRetinal ganglion cellsDendritic motilitySynaptic activityActivity-dependent synapse formationPossible retinal originRGC axon projectionImmune proteinsImmune-deficient miceDendritic densityGanglion cellsClass I major histocompatibility complex genesRetinal originNervous systemSynapse formationAxon projectionsMHCI receptorNeural circuitsSynaptic wiringSelective defectMajor histocompatibility complex (MHC) genesMiceRetinaNormal development
2007
Developmental Homeostasis of Mouse Retinocollicular Synapses
Chandrasekaran AR, Shah RD, Crair MC. Developmental Homeostasis of Mouse Retinocollicular Synapses. Journal Of Neuroscience 2007, 27: 1746-1755. PMID: 17301182, PMCID: PMC6673732, DOI: 10.1523/jneurosci.4383-06.2007.Peer-Reviewed Original ResearchMeSH KeywordsAlpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic AcidAnimalsAnimals, NewbornBrain MappingExcitatory Amino Acid AgonistsHomeostasisMembrane PotentialsMiceMice, Inbred C57BLMice, KnockoutModels, BiologicalN-MethylaspartateNeuronsReceptors, NicotinicRetinaSuperior ColliculiSynapsesVisual CortexVisual PathwaysConceptsRetinal wavesBeta2-/- miceSpontaneous retinal wavesRetinal ganglion cellsWild-type miceActivity-dependent competitionFirst postnatal weekTotal integrated responseLarge retinal areasTotal synaptic inputNeuronal receptive fieldsReceptive fieldsGanglion cellsPerturbation of activitiesSynaptic transmissionPostnatal weekResponse homeostasisSynaptic inputsRetinal areaRetinal inputSuperior colliculusStrong synapsesVisual cortexMutant miceRetinotopic mapping
2002
Brn3b/Brn3c double knockout mice reveal an unsuspected role for Brn3c in retinal ganglion cell axon outgrowth.
Wang SW, Mu X, Bowers WJ, Kim DS, Plas DJ, Crair MC, Federoff HJ, Gan L, Klein WH. Brn3b/Brn3c double knockout mice reveal an unsuspected role for Brn3c in retinal ganglion cell axon outgrowth. Development 2002, 129: 467-77. PMID: 11807038, DOI: 10.1242/dev.129.2.467.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsCell DifferentiationCulture TechniquesDNA-Binding ProteinsFemaleGene TargetingHumansMaleMiceMice, KnockoutMicroscopy, FluorescenceNeuritesRetinaRetinal Ganglion CellsTranscription Factor Brn-3Transcription Factor Brn-3ATranscription Factor Brn-3BTranscription Factor Brn-3CTranscription FactorsConceptsDouble knockout miceGanglion cell differentiationRetinal ganglion cell differentiationRetinal ganglion cellsOptic chiasmKnockout miceGanglion cellsMost retinal ganglion cellsRetinal ganglion cell axonsRetinal ganglion cell developmentGanglion cell axonsAxon outgrowthGanglion cell developmentCell differentiationDorsal rootsProjection neuronsTrigeminal ganglionCell axonsRetinal explantsPOU domain transcription factorBrn3bBrn3cMiceChiasmInner ear