2014
In Vivo Ketamine-Induced Changes in [11C]ABP688 Binding to Metabotropic Glutamate Receptor Subtype 5
DeLorenzo C, DellaGioia N, Bloch M, Sanacora G, Nabulsi N, Abdallah C, Yang J, Wen R, Mann JJ, Krystal JH, Parsey RV, Carson RE, Esterlis I. In Vivo Ketamine-Induced Changes in [11C]ABP688 Binding to Metabotropic Glutamate Receptor Subtype 5. Biological Psychiatry 2014, 77: 266-275. PMID: 25156701, PMCID: PMC4277907, DOI: 10.1016/j.biopsych.2014.06.024.Peer-Reviewed Original ResearchConceptsSubtype 5Ketamine administrationPET scansMetabotropic glutamate receptor subtype 5Prefrontal cortexAspartate glutamate receptor antagonistIntravenous ketamine administrationKetamine-induced effectsPositron emission tomography (PET) ligandGlutamate receptor antagonistsVolume of distributionMedial prefrontal cortexNegative allosteric modulatorsKetamine initiationGlutamate releaseDorsal putamenKetamine responseSubanesthetic dosesOrbital prefrontal cortexReceptor antagonistAcute effectsBolus injectionDorsal caudateArterial bloodScan 1Histidine Decarboxylase Deficiency Causes Tourette Syndrome: Parallel Findings in Humans and Mice
Baldan LC, Williams KA, Gallezot JD, Pogorelov V, Rapanelli M, Crowley M, Anderson GM, Loring E, Gorczyca R, Billingslea E, Wasylink S, Panza KE, Ercan-Sencicek AG, Krusong K, Leventhal BL, Ohtsu H, Bloch MH, Hughes ZA, Krystal JH, Mayes L, de Araujo I, Ding YS, State MW, Pittenger C. Histidine Decarboxylase Deficiency Causes Tourette Syndrome: Parallel Findings in Humans and Mice. Neuron 2014, 81: 77-90. PMID: 24411733, PMCID: PMC3894588, DOI: 10.1016/j.neuron.2013.10.052.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAmphetamineAnimalsBrainChildDopamine AgonistsDopamine AntagonistsExploratory BehaviorFemaleHistidine DecarboxylaseHumansMaleMaze LearningMiceMice, KnockoutMiddle AgedMutationOxazinesRacloprideRadionuclide ImagingStereotyped BehaviorTime FactorsTourette SyndromeTryptophanYoung AdultConceptsTourette syndromeHA infusionKnockout miceD2/D3 receptor bindingDecarboxylase deficiencyDopamine D2 antagonist haloperidolCortico-basal ganglia circuitsStriatal DA levelsHDC knockout miceD3 receptor bindingImmediate early gene FosD2 antagonist haloperidolRare genetic causeBiosynthesis of histamineStriatal DARare causeBasal gangliaDA levelsAntagonist haloperidolGanglia circuitsPrepulse inhibitionMiceReceptor bindingGenetic causeHistidine decarboxylase
2013
Global Resting-State Functional Magnetic Resonance Imaging Analysis Identifies Frontal Cortex, Striatal, and Cerebellar Dysconnectivity in Obsessive-Compulsive Disorder
Anticevic A, Hu S, Zhang S, Savic A, Billingslea E, Wasylink S, Repovs G, Cole MW, Bednarski S, Krystal JH, Bloch MH, Li CS, Pittenger C. Global Resting-State Functional Magnetic Resonance Imaging Analysis Identifies Frontal Cortex, Striatal, and Cerebellar Dysconnectivity in Obsessive-Compulsive Disorder. Biological Psychiatry 2013, 75: 595-605. PMID: 24314349, PMCID: PMC3969771, DOI: 10.1016/j.biopsych.2013.10.021.Peer-Reviewed Original ResearchConceptsObsessive-compulsive disorderPrefrontal cortexResting-state functional connectivity dataStriatum/nucleus accumbensVentral striatum/nucleus accumbensResting-state functional connectivity studiesVentral anterior cingulate cortexCortico-striatal circuitsMagnetic Resonance Imaging AnalysisAnterior cingulate cortexFunctional connectivity studiesBasal gangliaControl subjectsFunctional connectivity dataAnterior thalamusRight putamenFrontal cortexNucleus accumbensDorsal striatumCerebellar cortexAbnormal neural connectivityCerebellar dysconnectivityCingulate cortexWhole brainFunctional magnetic resonance imaging (fMRI) analysisBrain mechanisms for prepulse inhibition in adults with Tourette syndrome: Initial findings
Zebardast N, Crowley MJ, Bloch MH, Mayes LC, Wyk BV, Leckman JF, Pelphrey KA, Swain JE. Brain mechanisms for prepulse inhibition in adults with Tourette syndrome: Initial findings. Psychiatry Research 2013, 214: 33-41. PMID: 23916249, PMCID: PMC3932431, DOI: 10.1016/j.pscychresns.2013.05.009.Peer-Reviewed Original ResearchConceptsTourette syndromeFunctional magnetic resonance imagingHealthy subjectsTic severityWhole-brain functional magnetic resonance imagingYale Global Tic Severity ScaleTactile startle responseCase-control study designTic Severity ScaleCortical-striatal circuitsBrain activityMagnetic resonance imagingMultiple brain regionsLeft middle frontal gyrusMiddle frontal gyrusDegree of PPIPulse-alone stimuliBlock-design fMRI paradigmTic symptomsNeuropathological dataHealthy controlsPrepulse inhibitionDevelopmental neuropsychiatric disordersSensorimotor gatingLeft caudate
2012
NMDA receptor function in large-scale anticorrelated neural systems with implications for cognition and schizophrenia
Anticevic A, Gancsos M, Murray JD, Repovs G, Driesen NR, Ennis DJ, Niciu MJ, Morgan PT, Surti TS, Bloch MH, Ramani R, Smith MA, Wang XJ, Krystal JH, Corlett PR. NMDA receptor function in large-scale anticorrelated neural systems with implications for cognition and schizophrenia. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 16720-16725. PMID: 23012427, PMCID: PMC3478611, DOI: 10.1073/pnas.1208494109.Peer-Reviewed Original ResearchMeSH KeywordsAdultAlgorithmsBrainCognitionDouble-Blind MethodExcitatory Amino Acid AntagonistsFemaleHumansInfusions, IntravenousKetamineMagnetic Resonance ImagingMaleMemoryModels, NeurologicalPattern Recognition, VisualPsychomotor PerformanceReceptors, N-Methyl-D-AspartateSchizophreniaSynaptic TransmissionYoung AdultConceptsNeural systemsLarge-scale brain systemsTask-dependent activationN-methyl-D-aspartate receptorsRealistic computational modelingSevere neuropsychiatric illnessNMDA glutamate receptor antagonistGlutamate receptor antagonistsBrain systemsNMDA receptor functionTask performanceMultiple interacting regionsCognitionCortical disinhibitionGlutamatergic neurotransmissionReceptor antagonistCortical computationGlutamate's roleReciprocal relationshipNeuropsychiatric illnessLocal circuitsReceptor functionSchizophreniaPresent findingsComputational modeling