2021
Computational studies of anaplastic lymphoma kinase mutations reveal common mechanisms of oncogenic activation
Patil K, Jordan EJ, Park JH, Suresh K, Smith CM, Lemmon AA, Mossé YP, Lemmon MA, Radhakrishnan R. Computational studies of anaplastic lymphoma kinase mutations reveal common mechanisms of oncogenic activation. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2019132118. PMID: 33674381, PMCID: PMC7958353, DOI: 10.1073/pnas.2019132118.Peer-Reviewed Original Research
2019
Computational algorithms for in silico profiling of activating mutations in cancer
Jordan EJ, Patil K, Suresh K, Park JH, Mosse YP, Lemmon MA, Radhakrishnan R. Computational algorithms for in silico profiling of activating mutations in cancer. Cellular And Molecular Life Sciences 2019, 76: 2663-2679. PMID: 30982079, PMCID: PMC6589134, DOI: 10.1007/s00018-019-03097-2.Peer-Reviewed Original ResearchConceptsTarget proteinsSingle nucleotide polymorphismsB-RafSerine/threonine-protein kinase B-RafDifferent target proteinsEffects of mutationsStructure-based computational approachKinase domainStructure-based methodsStructure-based modelProtein structureProtein activationSilico profilingAnaplastic lymphoma kinaseInteraction of inhibitorsMutational landscapeHuman cancersPoint mutationsProteinMutationsMutational patternsDifferent mutationsActivation statusComputational approachLymphoma kinase