2024
REliable PIcking by Consensus (REPIC): a consensus methodology for harnessing multiple cryo-EM particle pickers
Cameron C, Seager S, Sigworth F, Tagare H, Gerstein M. REliable PIcking by Consensus (REPIC): a consensus methodology for harnessing multiple cryo-EM particle pickers. Communications Biology 2024, 7: 1421. PMID: 39482410, PMCID: PMC11528043, DOI: 10.1038/s42003-024-07045-0.Peer-Reviewed Original ResearchConceptsCryo-EM usersParticle identificationParticle pickingLow signal-to-noise ratioAchievable resolutionSignal-to-noise ratioState-of-the-art computational algorithmsInteger linear programmingParticle setManual interventionHigh-quality particlesGraph problemsParticle locationMultiple pickersParticles
2016
The real cost of sequencing: scaling computation to keep pace with data generation
Muir P, Li S, Lou S, Wang D, Spakowicz DJ, Salichos L, Zhang J, Weinstock GM, Isaacs F, Rozowsky J, Gerstein M. The real cost of sequencing: scaling computation to keep pace with data generation. Genome Biology 2016, 17: 53. PMID: 27009100, PMCID: PMC4806511, DOI: 10.1186/s13059-016-0917-0.Peer-Reviewed Original Research
2010
Comparing genomes to computer operating systems in terms of the topology and evolution of their regulatory control networks
Yan KK, Fang G, Bhardwaj N, Alexander RP, Gerstein M. Comparing genomes to computer operating systems in terms of the topology and evolution of their regulatory control networks. Proceedings Of The National Academy Of Sciences Of The United States Of America 2010, 107: 9186-9191. PMID: 20439753, PMCID: PMC2889091, DOI: 10.1073/pnas.0914771107.Peer-Reviewed Original ResearchConceptsTranscriptional regulatory networksRegulatory networksCellular design principlesCall graphEvolutionary ratesGlobal regulatorOperating systemRandom mutationsSoftware systemsLiving organismBiological evolutionRapid evolutionSubsequent selectionFunctional modulesComputer operating systemsRegulatorNetwork hubsBiological systemsDesign principlesControl networkGeneric componentsHierarchical layoutGenomeEvolutionTerms of topology
2004
Genomic analysis of regulatory network dynamics reveals large topological changes
Luscombe NM, Madan Babu M, Yu H, Snyder M, Teichmann SA, Gerstein M. Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 2004, 431: 308-312. PMID: 15372033, DOI: 10.1038/nature02782.Peer-Reviewed Original ResearchConceptsTranscription factorsActive transcription factorRegulatory network dynamicsBiological networksHigher eukaryotesLarge-scale topological changesGenomic scaleGenomic analysisCell cycleDiverse stimuliEnvironmental responsesMolecular biologyFast signal propagationTwo-tiered hierarchyNetwork analysisGlobal topological measuresLocal motifsSub-network structureEukaryotesTemporal progression