2023
Oncogenic context shapes the fitness landscape of tumor suppression
Blair L, Juan J, Sebastian L, Tran V, Nie W, Wall G, Gerceker M, Lai I, Apilado E, Grenot G, Amar D, Foggetti G, Do Carmo M, Ugur Z, Deng D, Chenchik A, Paz Zafra M, Dow L, Politi K, MacQuitty J, Petrov D, Winslow M, Rosen M, Winters I. Oncogenic context shapes the fitness landscape of tumor suppression. Nature Communications 2023, 14: 6422. PMID: 37828026, PMCID: PMC10570323, DOI: 10.1038/s41467-023-42156-y.Peer-Reviewed Original Research
2022
Systematic identification of biomarker-driven drug combinations to overcome resistance
Rees M, Brenan L, do Carmo M, Duggan P, Bajrami B, Arciprete M, Boghossian A, Vaimberg E, Ferrara S, Lewis T, Rosenberg D, Sangpo T, Roth J, Kaushik V, Piccioni F, Doench J, Root D, Johannessen C. Systematic identification of biomarker-driven drug combinations to overcome resistance. Nature Chemical Biology 2022, 18: 615-624. PMID: 35332332, DOI: 10.1038/s41589-022-00996-7.Peer-Reviewed Original ResearchConceptsSmall molecule responsesCell linesGSK-J4Gene expression featuresMonoacylglycerol lipaseGene knockoutSerine hydrolaseCancer cell linesSystematic identificationCell viability profileInsensitive cell linesNovel relationshipSmall moleculesMechanism of actionEnzymatic modificationSpecific mechanismsViability profileIntrinsic resistanceVariable responseMechanistic studiesRational candidatesMechanism
2020
Acquired Resistance to HER2-Targeted Therapies Creates Vulnerability to ATP Synthase Inhibition
Gale M, Li Y, Cao J, Liu ZZ, Holmbeck MA, Zhang M, Lang SM, Wu L, Do Carmo M, Gupta S, Aoshima K, DiGiovanna MP, Stern DF, Rimm DL, Shadel GS, Chen X, Yan Q. Acquired Resistance to HER2-Targeted Therapies Creates Vulnerability to ATP Synthase Inhibition. Cancer Research 2020, 80: 524-535. PMID: 31690671, PMCID: PMC7002225, DOI: 10.1158/0008-5472.can-18-3985.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic Combined Chemotherapy ProtocolsApoptosisBreast NeoplasmsCell ProliferationDrug Resistance, NeoplasmEnzyme InhibitorsFemaleHumansMiceMice, Inbred NODMice, SCIDMitochondrial Proton-Translocating ATPasesOligomycinsReceptor, ErbB-2TrastuzumabTumor Cells, CulturedXenograft Model Antitumor AssaysConceptsResistant cellsHER2-Targeted TherapyTrastuzumab-resistant tumorsNew therapeutic strategiesNovel potential targetDrug-free mediumAntibody therapySynthase inhibitionLow doseTherapeutic strategiesTrastuzumabBreast tumorsHER2TherapyAcquired ResistanceTumorsPotential targetMitochondrial respirationCellsSelective dependencyInhibitionMinimal changesNovel vulnerabilitiesATP synthase inhibitionOligomycin ADefining the landscape of ATP-competitive inhibitor resistance residues in protein kinases
Persky NS, Hernandez D, Do Carmo M, Brenan L, Cohen O, Kitajima S, Nayar U, Walker A, Pantel S, Lee Y, Cordova J, Sathappa M, Zhu C, Hayes TK, Ram P, Pancholi P, Mikkelsen TS, Barbie DA, Yang X, Haq R, Piccioni F, Root DE, Johannessen CM. Defining the landscape of ATP-competitive inhibitor resistance residues in protein kinases. Nature Structural & Molecular Biology 2020, 27: 92-104. PMID: 31925410, DOI: 10.1038/s41594-019-0358-z.Peer-Reviewed Original ResearchConceptsMammalian kinasesDeep mutational scanning dataDrug discovery effortsProtein kinaseMutagenesis dataMutant kinasesKinase activityDrug resistanceKinomeKinaseDiscovery effortsRelevant inhibitorsResiduesDisease developmentResistance mutationsMutationsActivation siteERK2MEK1MutantsBroader interrogationInhibitorsCSNK2A1Valuable toolTBK1