2023
Biomolecular Condensation of SH2 Domain-Containing Proteins on Membranes
Zeng L, Su X. Biomolecular Condensation of SH2 Domain-Containing Proteins on Membranes. Methods In Molecular Biology 2023, 2705: 371-379. PMID: 37668985, DOI: 10.1007/978-1-0716-3393-9_20.Peer-Reviewed Original ResearchConceptsSH2 domainSH2 domain-containing proteinsDomain-containing proteinsT cell receptorReceptors/adaptorsReceptor pathwayContext of membraneEndomembrane systemMembrane receptor pathwaysSignal transductionBiomolecular condensationSpecific tyrosinePlasma membraneReconstitution systemGolgi apparatusEndoplasmic reticulumLiquid-liquid phase separationMultivalent interactionsCondensate formationProteinMembranePathwayPhosphotyrosineAssaysTransduction
2021
PLCγ1 promotes phase separation of T cell signaling components
Zeng L, Palaia I, Šarić A, Su X. PLCγ1 promotes phase separation of T cell signaling components. Journal Of Cell Biology 2021, 220: e202009154. PMID: 33929486, PMCID: PMC8094118, DOI: 10.1083/jcb.202009154.Peer-Reviewed Original ResearchConceptsTCR signal transductionT-cell receptor pathwayLiquid-like condensatesKey adaptor proteinLAT clusteringLAT complexSH2 domainAdaptor proteinPhosphatase CD45Signal transductionTCR pathwayPhospholipase Cγ1ERK activationProtein compositionBiophysical principlesPLCγ1Critical functionsReceptor pathwayPathwayLATMajor componentT cellsCellsActivationDephosphorylation
2019
B1 oligomerization regulates PML nuclear body biogenesis and leukemogenesis
Li Y, Ma X, Chen Z, Wu H, Wang P, Wu W, Cheng N, Zeng L, Zhang H, Cai X, Chen SJ, Chen Z, Meng G. B1 oligomerization regulates PML nuclear body biogenesis and leukemogenesis. Nature Communications 2019, 10: 3789. PMID: 31439836, PMCID: PMC6706441, DOI: 10.1038/s41467-019-11746-0.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCarcinogenesisGene Knockout TechniquesHeLa CellsHumansLeukemia, Promyelocytic, AcuteMiceMice, TransgenicMutationOncogene Proteins, FusionPromyelocytic Leukemia ProteinProtein DomainsProtein MultimerizationRetinoic Acid Receptor alphaScattering, Small AngleSequence Analysis, RNASingle-Cell AnalysisSumoylationX-Ray DiffractionConceptsSingle-cell RNA sequencing analysisRNA sequencing analysisNuclear assemblyPML SUMOylationBiogenesisImportant regulatorOligomerization mechanismSequencing analysisUltracentrifugation analysisOligomerizationPML-RARαTransgenic miceLeukemogenesisGel filtrationSUMOylationSAXS characterizationTransactivationRegulatorProteinMechanismTetramerAssemblyF158Vivo studiesPML
2017
Structural basis of host recognition and biofilm formation by Salmonella Saf pili
Zeng L, Zhang L, Wang P, Meng G. Structural basis of host recognition and biofilm formation by Salmonella Saf pili. ELife 2017, 6: e28619. PMID: 29125121, PMCID: PMC5700814, DOI: 10.7554/elife.28619.Peer-Reviewed Original ResearchConceptsHost recognitionBiofilm formationNovel functionStructure-based mutantsSelf-association activityFunctional characterizationBiofilm formation assaysStructural basisBacterial aggregationFormation assaysCell aggregationPiliAdherence assaysColonizationSAXS characterizationAssaysMutantsSAFABacterial infectionsSAFDOligomerizationCrystal structureAggregationMechanismFormation
2013
Piperine inhibits the proliferation of human prostate cancer cells via induction of cell cycle arrest and autophagy
Ouyang DY, Zeng LH, Pan H, Xu LH, Wang Y, Liu KP, He XH. Piperine inhibits the proliferation of human prostate cancer cells via induction of cell cycle arrest and autophagy. Food And Chemical Toxicology 2013, 60: 424-430. PMID: 23939040, DOI: 10.1016/j.fct.2013.08.007.Peer-Reviewed Original ResearchMeSH KeywordsAlkaloidsAutophagyBenzodioxolesCell Cycle CheckpointsCell Line, TumorCell ProliferationCell SurvivalCyclin A1Cyclin D1Cyclin-Dependent Kinase Inhibitor p21Cyclin-Dependent Kinase Inhibitor p27Dose-Response Relationship, DrugDown-RegulationG1 PhaseHumansMalePiperidinesPolyunsaturated AlkamidesProstatic NeoplasmsUp-RegulationConceptsHuman prostate cancer cellsCell cycle arrestProstate cancer cellsPC-3 cellsPiperine treatmentCycle arrestCancer cellsHuman prostate cancer DU145Dose-dependent inhibitionCell linesAnti-proliferative effectsRobust cell cycle arrestGrowth inhibitory effectsLC3B puncta formationProstate cancer DU145LC3-II accumulationLNCaP cellsPresence of chloroquineCyclin D1LC3B-IILC3B punctaAntitumor mechanismAutophagy inhibitorInhibitory effectAntitumor activityAutophagy is differentially induced in prostate cancer LNCaP, DU145 and PC-3 cells via distinct splicing profiles of ATG5
Ouyang DY, Xu LH, He XH, Zhang YT, Zeng LH, Cai JY, Ren S. Autophagy is differentially induced in prostate cancer LNCaP, DU145 and PC-3 cells via distinct splicing profiles of ATG5. Autophagy 2013, 9: 20-32. PMID: 23075929, PMCID: PMC3542215, DOI: 10.4161/auto.22397.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAlternative SplicingAutophagyAutophagy-Related Protein 12Autophagy-Related Protein 5Base SequenceCell Line, TumorGene Knockdown TechniquesHumansMaleMicrotubule-Associated ProteinsProstatic NeoplasmsRNA, NeoplasmSequestosome-1 ProteinSmall Ubiquitin-Related Modifier ProteinsTransfectionValproic AcidConceptsATG12-ATG5 conjugatePC-3 cellsDU145 cellsAutophagic responseProstate cancer cellsLC3 punctaFull-length ATG5Autophagy-related proteinsCancer cellsCell linesDifferent prostate cancer cellsDefects of autophagyKnockdown of ATG5Conversion of LC3Splicing profilesAutophagy adaptorsAlternative transcriptsLC3-II conjugatesAutophagic stimulationAutophagy pathwayProstate cancer LNCaPAutophagy inductionATG5 geneSQSTM1 proteinCanonical transcripts