2024
Tlr9 deficiency in B cells leads to obesity by promoting inflammation and gut dysbiosis
Wang P, Yang X, Zhang L, Sha S, Huang J, Peng J, Gu J, Pearson J, Hu Y, Zhao H, Wong F, Wang Q, Wen L. Tlr9 deficiency in B cells leads to obesity by promoting inflammation and gut dysbiosis. Nature Communications 2024, 15: 4232. PMID: 38762479, PMCID: PMC11102548, DOI: 10.1038/s41467-024-48611-8.Peer-Reviewed Original ResearchConceptsToll-like receptor 9Gut microbiotaGut microbial communityTransferred to germ-free miceB cellsGerm-free miceTLR9 deficiencyKO miceGene sequencesGerminal center B cellsMicrobial communitiesMarginal zone B cellsGut dysbiosisFollicular helper cellsSelf-DNAMetabolic homeostasisAssociated with increased frequencyPro-inflammatory stateFat tissue inflammationGutHigh-fat dietMicrobiotaHelper cellsT cellsControl miceTLR5-deficiency controls dendritic cell subset development in an autoimmune diabetes-susceptible model
Pearson J, Hu Y, Peng J, Wong F, Wen L. TLR5-deficiency controls dendritic cell subset development in an autoimmune diabetes-susceptible model. Frontiers In Immunology 2024, 15: 1333967. PMID: 38482010, PMCID: PMC10935730, DOI: 10.3389/fimmu.2024.1333967.Peer-Reviewed Original ResearchConceptsToll-like receptor 5Antigen-presenting cellsDendritic cellsType 1 diabetesTLR5-deficientDC developmentCytokine secretionCD4<sup>+</sup> T cell proliferationPathogenesis of type 1 diabetesT cell responsesEnhanced cytokine secretionT cell proliferationWild-type miceSusceptibility to obesitySusceptibility to T1DProinflammatory cytokine secretionGut microbiotaSpontaneous T1DNOD miceAutoimmune diabetesNon-obeseHuman T1DReceptor 5Autoimmune diseasesHyper-secretion
2023
Novel engineered B lymphocytes targeting islet-specific T cells inhibit the development of type 1 diabetes in non-obese diabetic Scid mice
Chen D, Kakabadse D, Fishman S, Weinstein-Marom H, Davies J, Boldison J, Thayer T, Wen L, Gross G, Wong F. Novel engineered B lymphocytes targeting islet-specific T cells inhibit the development of type 1 diabetes in non-obese diabetic Scid mice. Frontiers In Immunology 2023, 14: 1227133. PMID: 37731505, PMCID: PMC10507356, DOI: 10.3389/fimmu.2023.1227133.Peer-Reviewed Original ResearchConceptsAntigen-specific CD8Islet-specific T cellsT cellsAutoimmune diabetesB cellsSCID miceMouse modelB lymphocytesNon-obese diabetic (NOD) mouse modelRegulatory B cell functionsProtective cell typesAntigen-specific CD4Pathogenic T cellsT cell cytotoxicityAntigen-presenting cellsCo-transfer experimentsDiabetic mouse modelDiabetic SCID miceType 1 diabetesAntigen-specific cellsB cell functionNovel therapeutic approachesMHC II moleculesSplenic B cellsPD-1NLRP6 deficiency expands a novel CD103+ B cell population that confers immune tolerance in NOD mice
Pearson J, Peng J, Huang J, Yu X, Tai N, Hu Y, Sha S, Flavell R, Zhao H, Wong F, Wen L. NLRP6 deficiency expands a novel CD103+ B cell population that confers immune tolerance in NOD mice. Frontiers In Immunology 2023, 14: 1147925. PMID: 36911699, PMCID: PMC9995752, DOI: 10.3389/fimmu.2023.1147925.Peer-Reviewed Original ResearchConceptsNlrp6-deficient miceType 1 diabetesNLRP6 deficiencyB cellsIL-10Non-obese diabetic (NOD) miceType 1 diabetes developmentRole of NLRP6Germ-free miceT cell proliferationB cell populationsIntestinal epithelial cellsBreg populationAutoimmune diabetesNOD miceCrohn's diseaseImmune toleranceDiabetes developmentDiabetic miceImmune cellsCD103Inflammasome proteinsImmune responseNLRP6Gut microbiota
2022
Carbonyl Posttranslational Modification Associated With Early-Onset Type 1 Diabetes Autoimmunity.
Yang ML, Connolly SE, Gee RJ, Lam TT, Kanyo J, Peng J, Guyer P, Syed F, Tse HM, Clarke SG, Clarke CF, James EA, Speake C, Evans-Molina C, Arvan P, Herold KC, Wen L, Mamula MJ. Carbonyl Posttranslational Modification Associated With Early-Onset Type 1 Diabetes Autoimmunity. Diabetes 2022, 71: 1979-1993. PMID: 35730902, PMCID: PMC9450849, DOI: 10.2337/db21-0989.Peer-Reviewed Original ResearchConceptsType 1 diabetesNOD miceMurine type 1 diabetesHuman type 1 diabetesDecreased glucose-stimulated insulin secretionAnti-insulin autoimmunityPrediabetic NOD miceGlucose-stimulated insulin secretionOnset Type 1T cell responsesOnset of hyperglycemiaCirculation of patientsAutoreactive CD4Insulin ratioInsulin secretionDiabetesPancreatic isletsType 1Islet proteinsOxidative stressAutoimmunitySelect groupMiceCarbonyl modificationOnsetIgM-associated gut bacteria in obesity and type 2 diabetes in C57BL/6 mice and humans
Pearson JA, Ding H, Hu C, Peng J, Galuppo B, Wong FS, Caprio S, Santoro N, Wen L. IgM-associated gut bacteria in obesity and type 2 diabetes in C57BL/6 mice and humans. Diabetologia 2022, 65: 1398-1411. PMID: 35587276, PMCID: PMC9283171, DOI: 10.1007/s00125-022-05711-8.Peer-Reviewed Original ResearchConceptsFecal microbiota transplantType 2 diabetesNormal glucose toleranceB6 miceWild-type miceGlucose toleranceIgM antibodiesObese youthGut microbiotaWeight gainGut bacteriaObese young individualsImpaired glucose toleranceDiet-induced obesityConclusions/interpretationOur resultsBody weight gainGreater weight gainMice fecal microbiotaHuman stool samplesGlucose intoleranceClinical featuresC57BL/6 miceMicrobiota transplantRecipient miceStool samplesObesity aggravates contact hypersensitivity reaction in mice
Majewska‐Szczepanik M, Kowalczyk P, Marcińska K, Strzępa A, Lis GJ, Wong FS, Szczepanik M, Wen L. Obesity aggravates contact hypersensitivity reaction in mice. Contact Dermatitis 2022, 87: 28-39. PMID: 35234303, PMCID: PMC9949724, DOI: 10.1111/cod.14088.Peer-Reviewed Original ResearchConceptsContact hypersensitivityFecal microbiota transplantationQuantitative polymerase chain reactionIL-17AObese miceEnhanced contact hypersensitivityGut microbiota dysbiosisLow-grade inflammationContact hypersensitivity reactionInfluence of obesityInflammatory skin diseaseT helper 1Antigen-specific responsesHigh-fat dietSubcutaneous adipose tissueProinflammatory CD4Proinflammatory milieuCytokine profileMicrobiota dysbiosisDendritic cellsLymph nodesMicrobiota transplantationHelper 1Hypersensitivity reactionsImmune cells
2021
IL-10 Deficiency Accelerates Type 1 Diabetes Development via Modulation of Innate and Adaptive Immune Cells and Gut Microbiota in BDC2.5 NOD Mice
Huang J, Tan Q, Tai N, Pearson JA, Li Y, Chao C, Zhang L, Peng J, Xing Y, Zhang L, Hu Y, Zhou Z, Wong FS, Wen L. IL-10 Deficiency Accelerates Type 1 Diabetes Development via Modulation of Innate and Adaptive Immune Cells and Gut Microbiota in BDC2.5 NOD Mice. Frontiers In Immunology 2021, 12: 702955. PMID: 34394099, PMCID: PMC8362616, DOI: 10.3389/fimmu.2021.702955.Peer-Reviewed Original ResearchConceptsNOD miceProportion of neutrophilsT cellsGut microbiotaDiabetes developmentT cell-mediated destructionT cell receptor transgenicType 1 diabetes developmentAccelerated diabetes developmentInhibition of diabetesModulation of InnatePathogenicity of CD4Cell-mediated destructionAdaptive immune cellsObese diabetic miceT regulatory (Treg) cellsDevelopment of diabetesPrevention of diabetesActivation of CD4Modulation of neutrophilsType 1 diabetesGut microbiota compositionInsulin-producing β-cellsSevere insulitisSpontaneous diabetesInnate immunity in latent autoimmune diabetes in adults
Huang J, Pearson JA, Wong FS, Wen L, Zhou Z. Innate immunity in latent autoimmune diabetes in adults. Diabetes/Metabolism Research And Reviews 2021, 38: e3480. PMID: 34156143, PMCID: PMC8813511, DOI: 10.1002/dmrr.3480.Peer-Reviewed Original ResearchConceptsType 1 diabetesDendritic cellsImmune cellsT cellsInnate immunityPathogenesis of LADALatent autoimmune diabetesAdaptive immune cellsPancreas of patientsType 2 diabetesImmune-associated genesIslet β-cellsAutoimmune diabetesClinical featuresImmunological reasonsAutoimmune diseasesRat modelB cellsDiabetesΒ-cellsImmunityPotential rolePathogenesisLADADiseaseInflammasomes and Type 1 Diabetes
Pearson JA, Wong FS, Wen L. Inflammasomes and Type 1 Diabetes. Frontiers In Immunology 2021, 12: 686956. PMID: 34177937, PMCID: PMC8219953, DOI: 10.3389/fimmu.2021.686956.Peer-Reviewed Original ResearchConceptsType 1 diabetesMultiprotein complexesEnhanced toleranceMicrobial ligandsIslet autoantibody developmentImmune responseGenetic associationMicrobial stimulationAvailable inhibitorsImportant modulatorType 1 diabetes susceptibilityPathwayDiabetes susceptibilityAutoimmune processMicrobiota compositionAutoantibody developmentMicrobiotaAnimal modelsInflammasomeActivationGenetic riskType 1DiabetesHumansRoleToll-like receptor 7 deficiency suppresses type 1 diabetes development by modulating B-cell differentiation and function
Huang J, Peng J, Pearson JA, Efthimiou G, Hu Y, Tai N, Xing Y, Zhang L, Gu J, Jiang J, Zhao H, Zhou Z, Wong FS, Wen L. Toll-like receptor 7 deficiency suppresses type 1 diabetes development by modulating B-cell differentiation and function. Cellular & Molecular Immunology 2021, 18: 328-338. PMID: 33432061, PMCID: PMC8027372, DOI: 10.1038/s41423-020-00590-8.Peer-Reviewed Original ResearchConceptsType 1 diabetes developmentToll-like receptorsType 1 diabetesDiabetes developmentB cellsTLR7 deficiencyNOD miceB cell differentiationT cellsClassical MHC class I moleculesHuman type 1 diabetesImmunodeficient NOD miceNOD B cellsDiabetogenic T cellsAntigen-presenting functionNonobese diabetic (NOD) miceT cell responsesB cell functionMHC class I moleculesPattern recognition receptorsT cell activationPathogen molecular patternsClass I moleculesDiabetogenic CD4Cytotoxic CD8
2020
Differentiating MHC-Dependent and -Independent Mechanisms of Lymph Node Stromal Cell Regulation of Proinsulin-Specific CD8+ T Cells in Type 1 Diabetes.
Thayer TC, Davies J, Pearson JA, Hanna SJ, Wen L, Wong FS. Differentiating MHC-Dependent and -Independent Mechanisms of Lymph Node Stromal Cell Regulation of Proinsulin-Specific CD8+ T Cells in Type 1 Diabetes. Diabetes 2020, 70: 529-537. PMID: 33122391, PMCID: PMC8176215, DOI: 10.2337/db19-1050.Peer-Reviewed Original ResearchConceptsType 1 diabetesCD3/CD28T cellsAutoreactive cellsMHC-independent mechanismsNOD mouse modelT cell cytotoxicityΒ-cell destructionStromal cell regulationT cell receptor engagementPeripheral toleranceDiabetes developmentEffector functionsMouse modelAntigen sensitivityCD8Suppressive mechanismsStromal cellsType 1MHCReceptor engagementLNSCDiabetesIndependent mechanismsCD28Insulin-Reactive T Cells Convert Diabetogenic Insulin-Reactive VH125 B Cells Into Tolerogenic Cells by Reducing Germinal Center T:B Cell Interactions in NOD Mice
Pearson JA, Li Y, Majewska-Szczepanik M, Guo J, Zhang L, Liu Y, Wong FS, Wen L. Insulin-Reactive T Cells Convert Diabetogenic Insulin-Reactive VH125 B Cells Into Tolerogenic Cells by Reducing Germinal Center T:B Cell Interactions in NOD Mice. Frontiers In Immunology 2020, 11: 585886. PMID: 33262765, PMCID: PMC7688534, DOI: 10.3389/fimmu.2020.585886.Peer-Reviewed Original ResearchConceptsB cell interactionsTransgenic NOD miceNOD miceT cellsB cellsT1D developmentAntigen-specific regulatory T cellsInsulin-reactive B cellsInsulin-reactive T cellsNon-obese diabetic (NOD) miceGerminal center TInsulin-reactive CD4Non-germinal centerCell interactionsCostimulatory molecule expressionRegulatory T cellsType 1 diabetesGC B cellsTolerogenic cellsAdoptive transferDiabetic miceTGFβ secretionMolecule expressionIgG isotypeKey autoantigenTLR9 Deficiency in B Cells Promotes Immune Tolerance via Interleukin-10 in a Type 1 Diabetes Mouse Model.
Sha S, Pearson JA, Peng J, Hu Y, Huang J, Xing Y, Zhang L, Zhu Y, Zhao H, Wong FS, Chen L, Wen L. TLR9 Deficiency in B Cells Promotes Immune Tolerance via Interleukin-10 in a Type 1 Diabetes Mouse Model. Diabetes 2020, 70: 504-515. PMID: 33154070, PMCID: PMC7881860, DOI: 10.2337/db20-0373.Peer-Reviewed Original ResearchConceptsToll-like receptor 9B cellsNOD miceInterleukin-10IL-10-producing B cellsType 1 diabetes developmentAdaptive immune stimuliΒ-cell autoimmunityB-cell-specific deficiencyNovel therapeutic strategiesInnate immune moleculesB cell-specific deletionT1D developmentDiabetes protectionIL-10TLR9 deficiencyImmune toleranceDiabetes developmentReceptor 9T1D treatmentTLR9 pathwayImmune stimuliMouse modelTherapeutic strategiesMetalloproteinase-1Crosstalk between circadian rhythms and the microbiota
Pearson JA, Wong FS, Wen L. Crosstalk between circadian rhythms and the microbiota. Immunology 2020, 161: 278-290. PMID: 33090484, PMCID: PMC7692254, DOI: 10.1111/imm.13278.Peer-Reviewed Original ResearchConceptsHost circadian rhythmsMicrobial oscillationsGene/protein expressionAspects of biologyCircadian rhythmMicrobial associationsMolecular oscillationsCircadian oscillationsMicrobial compositionMicrobial influenceCause diseaseMolecular techniquesHost metabolismDisease susceptibilityMicrobial changesProtein expressionPeripheral rhythmsMain inducerMicrobiotaSleep-wake cycleHost immunityCrosstalkClinical successPotential connectionMicrobesGut microbial metabolites alter IgA immunity in type 1 diabetes
Huang J, Pearson JA, Peng J, Hu Y, Sha S, Xing Y, Huang G, Li X, Hu F, Xie Z, Xiao Y, Luo S, Chao C, Wong F, Zhou Z, Wen L. Gut microbial metabolites alter IgA immunity in type 1 diabetes. JCI Insight 2020, 5 PMID: 32298241, PMCID: PMC7259536, DOI: 10.1172/jci.insight.135718.Peer-Reviewed Original ResearchConceptsType 1 diabetesGut microbiotaNOD miceImmune responseGerm-free NOD miceIgA immune responseIgA-mediated immunityHealthy control subjectsPotential therapeutic agentShort-chain fatty acid productionIgA immunityT1D preventionIgA responsesControl subjectsDecreased severityT1DTherapeutic agentsFunctional effectsMicrobiotaDiabetesPatientsUnderlying mechanismMiceImmunitySCFAMouse Models of Autoimmune Diabetes: The Nonobese Diabetic (NOD) Mouse
Chen D, Thayer TC, Wen L, Wong FS. Mouse Models of Autoimmune Diabetes: The Nonobese Diabetic (NOD) Mouse. Methods In Molecular Biology 2020, 2128: 87-92. PMID: 32180187, PMCID: PMC8253669, DOI: 10.1007/978-1-0716-0385-7_6.Peer-Reviewed Original ResearchConceptsNonobese diabetic (NOD) miceType 1 diabetesDiabetic miceMouse modelHuman type 1 diabetesUnmanipulated NOD miceAutoimmune thyroid diseaseDifferent mouse modelsAutoimmune diathesesAutoimmune diabetesNOD miceSpontaneous diabetesAutoimmune typeThyroid diseaseRodent modelsDiabetesIncidence of diseaseNatural historyGenetic susceptibilityMiceNumerous transgenicKnockout modelsDiseaseAutoimmuneSialadenitis
2019
Norovirus Changes Susceptibility to Type 1 Diabetes by Altering Intestinal Microbiota and Immune Cell Functions
Pearson JA, Tai N, Ekanayake-Alper DK, Peng J, Hu Y, Hager K, Compton S, Wong FS, Smith PC, Wen L. Norovirus Changes Susceptibility to Type 1 Diabetes by Altering Intestinal Microbiota and Immune Cell Functions. Frontiers In Immunology 2019, 10: 2654. PMID: 31798584, PMCID: PMC6863139, DOI: 10.3389/fimmu.2019.02654.Peer-Reviewed Original ResearchConceptsExpansion of TregsNOD miceT cellsMNV4 infectionMucosal immunityNon-obese diabetic (NOD) mouse modelGerm-free NOD miceFirmicutes/Bacteroidetes ratioProinflammatory T cellsRole of norovirusesTuft cell markersDevelopment of T1DInflammatory T cellsCommon enteric virusesB cell subsetsDiabetic mouse modelImmune cell functionType 1 diabetes susceptibilityEnteric virusesNaïve splenocytesT1D protectionTreg numbersImmunological changesMucosal antibodiesT1D development
2016
Different immunological responses to early-life antibiotic exposure affecting autoimmune diabetes development in NOD mice
Hu Y, Jin P, Peng J, Zhang X, Wong FS, Wen L. Different immunological responses to early-life antibiotic exposure affecting autoimmune diabetes development in NOD mice. Journal Of Autoimmunity 2016, 72: 47-56. PMID: 27178773, PMCID: PMC4958594, DOI: 10.1016/j.jaut.2016.05.001.Peer-Reviewed Original ResearchConceptsAntigen-presenting cellsType 1 diabetesAutoimmune diabetes developmentDiabetes developmentPregnant mothersEarly-life antibiotic exposureTolerogenic antigen-presenting cellsUntreated control miceInflammatory T cellsDifferent immunological responsesGut microbiota compositionDifferent immune responsesImportant environmental agentsGut bacterial compositionEarly time pointsNOD miceControl miceAutoimmune diseasesPrenatal exposureLymphoid organsAntibiotic exposureT cellsImmune responseImmunological responseNew therapiesThe Gut Microbiome in the NOD Mouse
Peng J, Hu Y, Wong FS, Wen L. The Gut Microbiome in the NOD Mouse. Methods In Molecular Biology 2016, 1433: 169-177. PMID: 27032947, DOI: 10.1007/7651_2016_331.Peer-Reviewed Original ResearchConceptsType 1 diabetes developmentNOD miceDiabetes developmentGut bacteriaSusceptible NOD miceNonobese diabetic (NOD) miceBacterial DNA sequencingGut microbiome compositionGut microbiome analysisMouse fecal samplesExcellent mouse modelDiabetic miceMouse modelGut microbiotaGut microbiomeIntestinal contentsMiceCritical modulatorDisease phenotypeFecal samplesMicrobiome compositionStandard protocolMicrobiome analysisHealthPathogenic microorganisms