2023
Novel engineered B lymphocytes targeting islet-specific T cells inhibit the development of type 1 diabetes in non-obese diabetic Scid mice
Chen D, Kakabadse D, Fishman S, Weinstein-Marom H, Davies J, Boldison J, Thayer T, Wen L, Gross G, Wong F. Novel engineered B lymphocytes targeting islet-specific T cells inhibit the development of type 1 diabetes in non-obese diabetic Scid mice. Frontiers In Immunology 2023, 14: 1227133. PMID: 37731505, PMCID: PMC10507356, DOI: 10.3389/fimmu.2023.1227133.Peer-Reviewed Original ResearchConceptsAntigen-specific CD8Islet-specific T cellsT cellsAutoimmune diabetesB cellsSCID miceMouse modelB lymphocytesNon-obese diabetic (NOD) mouse modelRegulatory B cell functionsProtective cell typesAntigen-specific CD4Pathogenic T cellsT cell cytotoxicityAntigen-presenting cellsCo-transfer experimentsDiabetic mouse modelDiabetic SCID miceType 1 diabetesAntigen-specific cellsB cell functionNovel therapeutic approachesMHC II moleculesSplenic B cellsPD-1
2022
Carbonyl Posttranslational Modification Associated With Early-Onset Type 1 Diabetes Autoimmunity.
Yang ML, Connolly SE, Gee RJ, Lam TT, Kanyo J, Peng J, Guyer P, Syed F, Tse HM, Clarke SG, Clarke CF, James EA, Speake C, Evans-Molina C, Arvan P, Herold KC, Wen L, Mamula MJ. Carbonyl Posttranslational Modification Associated With Early-Onset Type 1 Diabetes Autoimmunity. Diabetes 2022, 71: 1979-1993. PMID: 35730902, PMCID: PMC9450849, DOI: 10.2337/db21-0989.Peer-Reviewed Original ResearchConceptsType 1 diabetesNOD miceMurine type 1 diabetesHuman type 1 diabetesDecreased glucose-stimulated insulin secretionAnti-insulin autoimmunityPrediabetic NOD miceGlucose-stimulated insulin secretionOnset Type 1T cell responsesOnset of hyperglycemiaCirculation of patientsAutoreactive CD4Insulin ratioInsulin secretionDiabetesPancreatic isletsType 1Islet proteinsOxidative stressAutoimmunitySelect groupMiceCarbonyl modificationOnset
2015
NLRP3 deficiency protects from type 1 diabetes through the regulation of chemotaxis into the pancreatic islets
Hu C, Ding H, Li Y, Pearson JA, Zhang X, Flavell RA, Wong FS, Wen L. NLRP3 deficiency protects from type 1 diabetes through the regulation of chemotaxis into the pancreatic islets. Proceedings Of The National Academy Of Sciences Of The United States Of America 2015, 112: 11318-11323. PMID: 26305961, PMCID: PMC4568693, DOI: 10.1073/pnas.1513509112.Peer-Reviewed Original ResearchMeSH KeywordsAdoptive TransferAnimalsCarrier ProteinsCell MovementChemokine CCL5Chemokine CXCL10ChemotaxisDiabetes Mellitus, Type 1Gene ExpressionHumansInflammasomesInterferon Regulatory Factor-1Interleukin-1betaIslets of LangerhansMice, Inbred C57BLMice, Inbred NODMice, KnockoutMice, SCIDNLR Family, Pyrin Domain-Containing 3 ProteinReceptors, CCR5Receptors, CXCR3Reverse Transcriptase Polymerase Chain ReactionSignal TransductionTime FactorsT-LymphocytesConceptsType 1 diabetesLeucine-rich repeatsNonobese diabetic (NOD) mouse modelPancreatic isletsRegulation of chemotaxisTreatment of T1D.Role of TLRsDevelopment of T1DChemokine receptor CCR5Diabetic mouse modelT cell migrationT cell activationPresence of NLRP3Pancreatic islet cellsNLRP3 ablationOligomerization domainNLRP3 inflammasomeReceptor CCR5T cellsTh1 differentiationInflammasome pathwayAdaptive immunityMouse modelAnimal modelsIslet cells
2014
Interleukin-10+ Regulatory B Cells Arise Within Antigen-Experienced CD40+ B Cells to Maintain Tolerance to Islet Autoantigens
Kleffel S, Vergani A, Tezza S, Nasr M, Niewczas MA, Wong S, Bassi R, D’Addio F, Schatton T, Abdi R, Atkinson M, Sayegh MH, Wen L, Wasserfall CH, O’Connor K, Fiorina P. Interleukin-10+ Regulatory B Cells Arise Within Antigen-Experienced CD40+ B Cells to Maintain Tolerance to Islet Autoantigens. Diabetes 2014, 64: 158-171. PMID: 25187361, PMCID: PMC4274804, DOI: 10.2337/db13-1639.Peer-Reviewed Original ResearchConceptsIslet autoantigensB cellsT1D patientsInterleukin-10IL-10-producing B cellsHyperglycemic nonobese diabetic miceRegulatory B-cell responsesAutoreactive T cell responsesT cell-mediated responsesRole of BregsB-cell depletionRegulatory B cellsNonobese diabetic (NOD) miceNOD mouse modelT cell responsesB cell responsesType 1 diabetesB cell receptorAdoptive transferDiabetic miceAutoimmune diseasesHuman ILHyperglycemic miceMouse modelBregs
2009
Expression of Diabetes-Associated Genes by Dendritic Cells and CD4 T Cells Drives the Loss of Tolerance in Nonobese Diabetic Mice
Hamilton-Williams EE, Martinez X, Clark J, Howlett S, Hunter KM, Rainbow DB, Wen L, Shlomchik MJ, Katz JD, Beilhack GF, Wicker LS, Sherman LA. Expression of Diabetes-Associated Genes by Dendritic Cells and CD4 T Cells Drives the Loss of Tolerance in Nonobese Diabetic Mice. The Journal Of Immunology 2009, 183: 1533-1541. PMID: 19592648, PMCID: PMC2733871, DOI: 10.4049/jimmunol.0900428.Peer-Reviewed Original ResearchConceptsRegulatory T cellsT cellsDendritic cellsNOD miceProtective allelesCD4 T-cell expressionTolerance defectsImmune tolerance resultsPancreatic lymph nodesCD8 T cellsNonobese diabetic (NOD) miceCD4 T cellsT cell expressionLoss of toleranceIL-2 productionDiabetes 3Lymph nodesDiabetic miceIslet AgsNOD alleleCell expressionMiceSpontaneous developmentIdd3Tolerance results
2008
Innate immunity and intestinal microbiota in the development of Type 1 diabetes
Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, Hu C, Wong FS, Szot GL, Bluestone JA, Gordon JI, Chervonsky AV. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 2008, 455: 1109-1113. PMID: 18806780, PMCID: PMC2574766, DOI: 10.1038/nature07336.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBacteriaCD8-Positive T-LymphocytesDiabetes Mellitus, Type 1FemaleImmunity, InnateInterferon-gammaIntestinesIslets of LangerhansMaleMiceMice, Inbred NODMice, KnockoutMice, SCIDMolecular Sequence DataMyeloid Differentiation Factor 88PhylogenySpecific Pathogen-Free OrganismsTime FactorsConceptsType 1 diabetesNOD miceInnate immunityRapid innate immune responseDevelopment of diabetesNormal human gutInnate immune responseAdaptor protein MyD88Autoimmune diabetesTherapeutic optionsImmune responseNegative miceIntestinal microbiotaProtein MyD88DiabetesMiceGut microbesImmunityHuman gutMicrobial productsMyD88Influence predispositionIncidence
2006
TGF-β signaling is required for the function of insulin-reactive T regulatory cells
Du W, Wong FS, Li MO, Peng J, Qi H, Flavell RA, Sherwin R, Wen L. TGF-β signaling is required for the function of insulin-reactive T regulatory cells. Journal Of Clinical Investigation 2006, 116: 1360-1370. PMID: 16670772, PMCID: PMC1451206, DOI: 10.1172/jci27030.Peer-Reviewed Original ResearchConceptsT cellsNOD miceRegulatory cellsDominant negative TGF-beta receptor type IITransgenic miceTCR transgenic T cellsTGF-beta receptor type IIDiabetic NOD miceDiabetogenic spleen cellsDiabetogenic T cellsTCR transgenic miceTransgenic T cellsReceptor type IIBDC2.5 miceAdoptive transferTGF-beta signalingSpleen cellsParacrine mannerGranule antigensAutocrine mannerSuppressive propertiesDiabetesMiceTarget cellsSpontaneous development
2005
The Influence of the Major Histocompatibility Complex on Development of Autoimmune Diabetes in RIP-B7.1 Mice
Wong FS, Du W, Thomas IJ, Wen L. The Influence of the Major Histocompatibility Complex on Development of Autoimmune Diabetes in RIP-B7.1 Mice. Diabetes 2005, 54: 2032-2040. PMID: 15983204, DOI: 10.2337/diabetes.54.7.2032.Peer-Reviewed Original ResearchMeSH KeywordsAdoptive TransferAnimalsB7-1 AntigenCD4-Positive T-LymphocytesCD8-Positive T-LymphocytesDiabetes Mellitus, Type 1Histocompatibility Antigens Class IHistocompatibility Antigens Class IIIslets of LangerhansLymphocyte DepletionMajor Histocompatibility ComplexMiceMice, Inbred C57BLMice, Inbred NODMice, SCIDConceptsT cell repertoireMajor histocompatibility complexI-Ag7Autoimmune T cell repertoireImportant genetic susceptibility factorAutoreactive T cell repertoireBALB/c miceHistocompatibility complexNonobese-resistant miceRIP-B7.1 miceCD8 T cellsNonobese diabetic (NOD) miceMHC class II moleculesDiabetes-resistant miceType 1 diabetesIslet beta cellsClass II moleculesCostimulatory molecule B7.1MHC class IC57BL/6 genetic backgroundGenetic susceptibility factorsLocal costimulationAutoimmune diabetesNOD miceSpontaneous diabetes
2003
Autoimmune diabetes in HLA‐DR3/DQ8 transgenic mice expressing the co‐stimulatory molecule B7‐1 in the β cells of islets of Langerhans
Rajagopalan G, Kudva YC, Chen L, Wen L, David CS. Autoimmune diabetes in HLA‐DR3/DQ8 transgenic mice expressing the co‐stimulatory molecule B7‐1 in the β cells of islets of Langerhans. International Immunology 2003, 15: 1035-1044. PMID: 12917255, DOI: 10.1093/intimm/dxg103.Peer-Reviewed Original ResearchConceptsCo-stimulatory molecules B7-1Incidence of diabetesTransgenic miceB7-1Autoimmune diabetesHLA-DQ8HLA-DR3T cellsBeta cellsBeta-cell toxin streptozotocinHLA class II associationsDQ8 transgenic micePresence of DR3HLA transgenic miceAntibody-mediated depletionPathogenesis of T1D.Class II associationsHLA class IIWhole-body irradiationPancreatic beta cellsNon-specific activationSpontaneous diabetesToxin streptozotocinDiabetogenic potentialSTZ treatmentCritical roles of CD30/CD30L interactions in murine autoimmune diabetes
CHAKRABARTY S, NAGATA M, YASUDA H, WEN L, NAKAYAMA M, CHOWDHURY S, YAMADA K, JIN Z, KOTANI R, MORIYAMA H, SHIMOZATO O, YAGITA H, YOKONO K. Critical roles of CD30/CD30L interactions in murine autoimmune diabetes. Clinical & Experimental Immunology 2003, 133: 318-325. PMID: 12930356, PMCID: PMC1808783, DOI: 10.1046/j.1365-2249.2003.02223.x.Peer-Reviewed Original ResearchMeSH KeywordsAdoptive TransferAnimalsAntibodies, MonoclonalAutoimmune DiseasesCD30 LigandCD4-Positive T-LymphocytesCD8-Positive T-LymphocytesDiabetes Mellitus, ExperimentalFemaleIslets of LangerhansKi-1 AntigenMaleMembrane GlycoproteinsMiceMice, Inbred NODMice, SCIDT-LymphocytesT-Lymphocytes, CytotoxicConceptsCD30/CD30L interactionIslet-specific CD4NOD miceDevelopment of diabetesT cell linesAutoimmune diabetesDiabetic NOD miceSpontaneous autoimmune diabetesPancreatic lymph nodesYoung NOD miceNOD-SCID miceT cell proliferationCD30/CD30LTumor necrosis factor receptorWeeks of ageCell linesNecrosis factor receptorMurine autoimmuneIslet antigensSpontaneous diabetesAdoptive transferLymph nodesEffector phaseT cellsSpleen cells
2001
Type 1 Diabetes-Predisposing MHC Alleles Influence the Selection of Glutamic Acid Decarboxylase (GAD) 65-Specific T Cells in a Transgenic Model
Abraham R, Wen L, Marietta E, David C. Type 1 Diabetes-Predisposing MHC Alleles Influence the Selection of Glutamic Acid Decarboxylase (GAD) 65-Specific T Cells in a Transgenic Model. The Journal Of Immunology 2001, 166: 1370-1379. PMID: 11145722, DOI: 10.4049/jimmunol.166.2.1370.Peer-Reviewed Original ResearchMeSH KeywordsAllelesAmino Acid SequenceAnimalsAntibody SpecificityCells, CulturedCytokinesDiabetes Mellitus, Type 1Disease Models, AnimalEpitopes, T-LymphocyteGenes, MHC Class IIGenetic Predisposition to DiseaseGlutamate DecarboxylaseHLA-DQ AntigensHLA-DR3 AntigenHumansImmunophenotypingIslets of LangerhansIsoenzymesLymphocyte ActivationMiceMice, Inbred C57BLMice, TransgenicMolecular Sequence DataRatsT-Lymphocyte SubsetsConceptsGlutamic acid decarboxylaseGAD 65T cellsDQ8 miceMixed Th1/Th2 cytokine profileEndogenous MHC class IISpontaneous T-cell reactivityTh1/Th2 cytokine profileGlutamic acid decarboxylase 65Self-reactive responsesT cell reactivityTh2 cytokine profileAutoantigen glutamic acid decarboxylase 65Type 1 diabetesMHC class IIDiabetes-associated genesCytokine profileIslet autoantigensHLA-DR3Immune toleranceHLA-DQ6Cell reactivitySelf-AgImmune responseHLA alleles
1999
Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library
Wong F, Karttunen J, Dumont C, Wen L, Visintin I, Pilip I, Shastri N, Pamer E, Janeway C. Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library. Nature Medicine 1999, 5: 1026-1031. PMID: 10470079, DOI: 10.1038/12465.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAutoantigensCD8-Positive T-LymphocytesClone CellsCloning, MolecularCOS CellsDiabetes Mellitus, Type 1Epitopes, T-LymphocyteGene LibraryHistocompatibility Antigens Class IInsulinInterferon-gammaIslets of LangerhansLymphocyte ActivationLymphocyte CountMiceMice, Inbred NODMice, Inbred StrainsOrgan SpecificityPeptidesConceptsType 1 diabetesAutoimmune diseasesT cellsPathogenic CD4 T cellsPathogenic CD8 T cellsNon-obese diabetic (NOD) miceCD8 T cell epitopesInsulin-producing pancreatic β-cellsAntigen-specific immunotherapyCD8 T lymphocytesCD8 T cellsCD4 T cellsT cell epitopesGood animal modelMHC class IIdentification of autoantigensPancreatic β-cellsDiabetic micePreventative therapyHuman diabetesT lymphocytesAnimal modelsImmune processesDiabetesΒ-cells
1998
The Role of Lymphocyte Subsets in Accelerated Diabetes in Nonobese Diabetic–Rat Insulin Promoter–B7-1 (NOD-RIP-B7-1) Mice
Wong F, Visintin I, Wen L, Granata J, Flavell R, Janeway C. The Role of Lymphocyte Subsets in Accelerated Diabetes in Nonobese Diabetic–Rat Insulin Promoter–B7-1 (NOD-RIP-B7-1) Mice. Journal Of Experimental Medicine 1998, 187: 1985-1993. PMID: 9625758, PMCID: PMC2212360, DOI: 10.1084/jem.187.12.1985.Peer-Reviewed Original ResearchMeSH KeywordsAdoptive TransferAge of OnsetAnimalsAntigen PresentationB7-1 AntigenCD4-Positive T-LymphocytesCD8-Positive T-LymphocytesDiabetes Mellitus, Type 1Histocompatibility Antigens Class IIncidenceInsulinIslets of LangerhansLymphocyte SubsetsMiceMice, Inbred NODMice, TransgenicPromoter Regions, GeneticSpleenConceptsCD8 T cellsT cellsNOD miceB cellsAccelerated diabetesDiabetic miceB7-1 transgenic micePeripheral CD8 T cellsEffective antigen-presenting cellsMajor histocompatibility complex class IInsulin promoterCD4-/- miceMuMT-/- miceNontransgenic NOD miceNormal NOD miceNonobese diabetic (NOD) miceCD4 T cellsHistocompatibility complex class IAntigen-presenting cellsProvision of costimulationComplex class IPancreatic beta cellsWk of ageB220-positive B cellsIslet infiltrates
1996
CD8 T cell clones from young nonobese diabetic (NOD) islets can transfer rapid onset of diabetes in NOD mice in the absence of CD4 cells.
Wong FS, Visintin I, Wen L, Flavell RA, Janeway CA. CD8 T cell clones from young nonobese diabetic (NOD) islets can transfer rapid onset of diabetes in NOD mice in the absence of CD4 cells. Journal Of Experimental Medicine 1996, 183: 67-76. PMID: 8551245, PMCID: PMC2192404, DOI: 10.1084/jem.183.1.67.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsB7-1 AntigenBase SequenceCD4-Positive T-LymphocytesCD8-Positive T-LymphocytesClone CellsCytokinesDiabetes Mellitus, Type 2FemaleImmunohistochemistryImmunotherapy, AdoptiveInsulinIslets of LangerhansLymphocyte ActivationMembrane GlycoproteinsMiceMice, Inbred BALB CMice, Inbred C57BLMice, Inbred NODMice, SCIDMolecular Sequence DataPancreasPerforinPore Forming Cytotoxic ProteinsPromoter Regions, GeneticConceptsT cell linesNOD miceT cellsCD8 T cell linesCD8 T cell clonesNonobese diabetic (NOD) miceCB17 SCID miceCD4 T cellsPathogenesis of diabetesT cell clonesCell linesIslets of LangerhansT cell antigen receptorNOD isletsCD4 cellsLymphocytic infiltrateNOD-SCIDDiabetic miceDiabetic isletsFemale NODRapid onsetCell antigen receptorH-2KdAntigen receptorMice
1994
T Cell Clones Generated from Patients with Type 1 Diabetes Using Interleukin-2 Proliferate to Human Islet Antigens
Peakman M, Wen L, McNab G, Watkins P, Tan K, Vergani D. T Cell Clones Generated from Patients with Type 1 Diabetes Using Interleukin-2 Proliferate to Human Islet Antigens. Autoimmunity 1994, 17: 31-39. PMID: 8025212, DOI: 10.3109/08916939409014656.Peer-Reviewed Original ResearchMeSH KeywordsAdultAutoantigensAutoimmune DiseasesCD4 AntigensCD8 AntigensChildChild, PreschoolClone CellsDiabetes Mellitus, Type 1FemaleHumansInterleukin-2Islets of LangerhansLymphocyte ActivationMaleReceptors, Antigen, T-Cell, alpha-betaReceptors, Antigen, T-Cell, gamma-deltaReceptors, Interleukin-2T-Lymphocyte SubsetsConceptsT cell clonesT lymphocytesIslet antigensControl subjectsAntigen specificityType 1Cell clonesT cell populationsPeripheral blood lymphocytesIL-2 receptorActivated T lymphocytesDose-dependent fashionPrediabetic periodLiver membrane preparationsPeripheral bloodAutologous APCIL-2Blood lymphocytesPatientsHuman isletsLymphocytesMembrane preparationsProliferation assaysPathogenesisAntigen