2007
Slack and Slick KNa Channels Regulate the Accuracy of Timing of Auditory Neurons
Yang B, Desai R, Kaczmarek LK. Slack and Slick KNa Channels Regulate the Accuracy of Timing of Auditory Neurons. Journal Of Neuroscience 2007, 27: 2617-2627. PMID: 17344399, PMCID: PMC6672517, DOI: 10.1523/jneurosci.5308-06.2007.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsAnimals, NewbornAuditory PathwaysBithionolBrain StemComputer SimulationElectric ConductivityElectric StimulationElectrophysiologyIn Vitro TechniquesMiceModels, NeurologicalNerve Tissue ProteinsNeuronsNeurons, AfferentPotassium ChannelsPotassium Channels, Sodium-ActivatedReaction TimeSodium
2006
A Store-Operated Ca2+ Influx Pathway in the Bag Cell Neurons of Aplysia
Kachoei BA, Knox RJ, Uthuza D, Levy S, Kaczmarek LK, Magoski NS. A Store-Operated Ca2+ Influx Pathway in the Bag Cell Neurons of Aplysia. Journal Of Neurophysiology 2006, 96: 2688-2698. PMID: 16885525, PMCID: PMC2894935, DOI: 10.1152/jn.00118.2006.Peer-Reviewed Original ResearchMeSH KeywordsAnilidesAnimalsAplysiaCalcium Channel BlockersCalcium ChannelsCalcium SignalingElectrophysiologyEnzyme InhibitorsImidazolesIn Vitro TechniquesIndicators and ReagentsIndolesInositol 1,4,5-TrisphosphateLanthanumMacrocyclic CompoundsMembrane PotentialsNeuronsNickelOxazolesRyanodine Receptor Calcium Release ChannelThapsigarginThiadiazolesConceptsBag cell neuronsCell neuronsCyclopiazonic acidCPA-sensitive storesSmooth muscle cell lineAbsence of extracellularCultured bag cell neuronsRyanodine receptor agonistATPase inhibitorReceptor blockersReceptor agonistNeuropeptide secretionXestospongin CMuscle cell lineInflux pathwayIntracellular storesNonneuronal cellsAcidic storesElevated intracellularNeuronsStore depletionAfterdischargesCell linesBafilomycin AEntry pathway
2005
Actions of BAX on Mitochondrial Channel Activity and on Synaptic Transmission
Jonas EA, Hardwick JM, Kaczmarek LK. Actions of BAX on Mitochondrial Channel Activity and on Synaptic Transmission. Antioxidants & Redox Signaling 2005, 7: 1092-1100. PMID: 16115013, DOI: 10.1089/ars.2005.7.1092.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisBcl-2-Associated X ProteinBcl-X ProteinCell MembraneElectrophysiologyIntracellular MembranesLiposomesLoligoMitochondriaMultigene FamilyNeurotransmitter AgentsPatch-Clamp TechniquesPeptidesPresynaptic TerminalsProtein Structure, TertiarySynapsesSynaptic TransmissionTime FactorsConceptsMitochondrial membraneBcl-2 family proteins BaxCell deathOuter mitochondrial membraneAction of BaxMitochondrial channel activityChannel activityNormal physiological settingsAntiapoptotic Bcl-xL proteinBcl-xL proteinDeath channelMitochondrial architectureMitochondrial channelsProapoptotic fragmentsLarge conductance channelPresynaptic terminalsBcl-xL.Proapoptotic proteinsAlternative functionsProtein BaxPhysiological settingsPhysiological roleSynaptic transmissionBaxNeurotransmitter releaseFor K+ channels, Na+ is the new Ca2+
Bhattacharjee A, Kaczmarek LK. For K+ channels, Na+ is the new Ca2+. Trends In Neurosciences 2005, 28: 422-428. PMID: 15979166, DOI: 10.1016/j.tins.2005.06.003.Peer-Reviewed Original Research
2000
Activation of a Ca2+‐permeable cation channel produces a prolonged attenuation of intracellular Ca2+ release in Aplysia bag cell neurones
Magoski N, Knox R, Kaczmarek L. Activation of a Ca2+‐permeable cation channel produces a prolonged attenuation of intracellular Ca2+ release in Aplysia bag cell neurones. The Journal Of Physiology 2000, 522: 271-283. PMID: 10639103, PMCID: PMC2269759, DOI: 10.1111/j.1469-7793.2000.t01-2-00271.x.Peer-Reviewed Original ResearchConceptsVoltage-gated Ca2Non-selective cation channelsRefractory periodCation channelsElectrical stimulationFree salineAbility of nifedipinePresence of nifedipinePresence of TTXIntact abdominal gangliaProlonged refractory periodOnset of refractorinessAfferent inputBrief synaptic stimulationHigh external potassiumPermeable cation channelIntracellular calciumAbdominal ganglionExtracellular Ca2Synaptic stimulationAfterdischargesNormal responseIntracellular Ca2Intracellular storesRepeated stimulation
1998
Contribution of the Kv3.1 potassium channel to high‐frequency firing in mouse auditory neurones
Wang L, Gan L, Forsythe I, Kaczmarek L. Contribution of the Kv3.1 potassium channel to high‐frequency firing in mouse auditory neurones. The Journal Of Physiology 1998, 509: 183-194. PMID: 9547392, PMCID: PMC2230948, DOI: 10.1111/j.1469-7793.1998.183bo.x.Peer-Reviewed Original Research
1996
Ionic Currents Underlying Developmental Regulation of Repetitive Firing in Aplysia Bag Cell Neurons
Nick T, Kaczmarek L, Carew T. Ionic Currents Underlying Developmental Regulation of Repetitive Firing in Aplysia Bag Cell Neurons. Journal Of Neuroscience 1996, 16: 7583-7598. PMID: 8922415, PMCID: PMC6579091, DOI: 10.1523/jneurosci.16-23-07583.1996.Peer-Reviewed Original ResearchConceptsBag cell neuronsRepetitive firingCell neuronsEgg-laying behaviorJuvenile neuronsTetraethyl ammonium chlorideDevelopmental regulationSpecific ionic currentsAplysia bag cell neuronsAfterdischargesElectrical stimulationVariety of stimuliDevelopmental controlNeuronal systemsProlonged depolarizationBehavioral effectsNeuronsIonic currentsDevelopmental mechanismsSelective regulationAdultsAplysia californicaFiringRegulationDepolarizationManipulation of the delayed rectifier Kv1.5 potassium channel in glial cells by antisense oligodeoxynucleotides
Roy M, Saal D, Perney T, Sontheimer H, Waxman S, Kaczmarek L. Manipulation of the delayed rectifier Kv1.5 potassium channel in glial cells by antisense oligodeoxynucleotides. Glia 1996, 18: 177-184. PMID: 8915650, DOI: 10.1002/(sici)1098-1136(199611)18:3<177::aid-glia2>3.0.co;2-x.Peer-Reviewed Original ResearchConceptsGlial cellsKv1.5 channel proteinSpinal cordKv1.5 proteinCultured spinal cordTEA-insensitive currentSpinal cord astrocytesRectifier current densityPotassium channel typesAntisense oligodeoxynucleotide treatmentKv1.5 potassium channelAdult ratsCerebellar slicesChannel proteinsAstrocytesOligodeoxynucleotide treatmentPotassium channelsRectifier currentEndfoot processesSuch treatmentCurrent activationAntisense oligodeoxynucleotidesCordCellsTreatmentIdentification and Characterization of a Ca2+-Sensitive Nonspecific Cation Channel Underlying Prolonged Repetitive Firing in Aplysia Neurons
Wilson G, Richardson F, Fisher T, Olivera B, Kaczmarek L. Identification and Characterization of a Ca2+-Sensitive Nonspecific Cation Channel Underlying Prolonged Repetitive Firing in Aplysia Neurons. Journal Of Neuroscience 1996, 16: 3661-3671. PMID: 8642410, PMCID: PMC6578840, DOI: 10.1523/jneurosci.16-11-03661.1996.Peer-Reviewed Original ResearchConceptsNonspecific cation channelRepetitive firingCation channelsSpontaneous repetitive firingNeuronal response propertiesBag cell neuronsSlow inwardNeuronal excitabilityCell neuronsChannels underliesProlonged dischargeAplysia bag cell neuronsAplysia neuronsAfterdischargesNeuronsPhosphorylation-mediated changesResponse propertiesChannel recordingsConus textileFiringO mVTetrodotoxinExcitabilityInsulin receptor in Aplysia neurons: characterization, molecular cloning, and modulation of ion currents
Jonas E, Knox R, Kaczmarek L, Schwartz J, Solomon D. Insulin receptor in Aplysia neurons: characterization, molecular cloning, and modulation of ion currents. Journal Of Neuroscience 1996, 16: 1645-1658. PMID: 8774433, PMCID: PMC6578688, DOI: 10.1523/jneurosci.16-05-01645.1996.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAmino Acid SequenceAnimalsAplysiaBase SequenceCalcium ChannelsCloning, MolecularDNA, ComplementaryElectrophysiologyImmunohistochemistryInsulinIon ChannelsMolecular ProbesMolecular Sequence DataNeuronsPotassium ChannelsProtein-Tyrosine KinasesReceptor, InsulinTissue DistributionConceptsBag cell neuronsInsulin receptorInsulin-like peptidesImmunocytochemical staining showCell neuronsTyrosine kinase receptorsVertebrate insulinsMolecular cloningHerbimycin ATyrosine residuesTyrosine kinaseKinase receptorsInsulin-like growth factor-1Factor 1Staining showsVoltage-clamped neuronsVoltage-dependent Ca2Growth factor-1Aplysia californicaAplysia neuronsNervous systemReceptorsAction potentialsNeuronsInsulin
1995
Electrophysiological and pharmacological characterization of a mammalian Shaw channel expressed in NIH 3T3 fibroblasts
Kanemasa T, Gan L, Perney T, Wang L, Kaczmarek L. Electrophysiological and pharmacological characterization of a mammalian Shaw channel expressed in NIH 3T3 fibroblasts. Journal Of Neurophysiology 1995, 74: 207-217. PMID: 7472324, DOI: 10.1152/jn.1995.74.1.207.Peer-Reviewed Original Research
1994
The minK potassium channel exists in functional and nonfunctional forms when expressed in the plasma membrane of Xenopus oocytes
Blumenthal E, Kaczmarek L. The minK potassium channel exists in functional and nonfunctional forms when expressed in the plasma membrane of Xenopus oocytes. Journal Of Neuroscience 1994, 14: 3097-3105. PMID: 7514215, PMCID: PMC6577436, DOI: 10.1523/jneurosci.14-05-03097.1994.Peer-Reviewed Original ResearchConceptsN-terminal domainMinK proteinPlasma membraneInjected mRNAXenopus oocytesMinK potassium channelsFunctional potassium channelsPotassium channelsAmino acid epitopeProtein sequencesLevels of proteinMink genesLive oocytesIntracellular cAMP levelsKinetics of activationProteinOocytesMinK mRNANonfunctional formMRNASurface expressionRNAMinK currentsMRNA levelsCAMP levelsAutoactive peptides act at three distinct receptors to depolarize the bag cell neurons of Aplysia
Loechner K, Kaczmarek L. Autoactive peptides act at three distinct receptors to depolarize the bag cell neurons of Aplysia. Journal Of Neurophysiology 1994, 71: 195-203. PMID: 8158229, DOI: 10.1152/jn.1994.71.1.195.Peer-Reviewed Original Research
1993
The peptide FMRFa terminates a discharge in Aplysia bag cell neurons by modulating calcium, potassium, and chloride conductances
Fisher T, Lin C, Kaczmarek L. The peptide FMRFa terminates a discharge in Aplysia bag cell neurons by modulating calcium, potassium, and chloride conductances. Journal Of Neurophysiology 1993, 69: 2164-2173. PMID: 7688803, DOI: 10.1152/jn.1993.69.6.2164.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAplysiaCalcium ChannelsCells, CulturedChloride ChannelsElectric StimulationElectrophysiologyFMRFamideGangliaImmunohistochemistryIon ChannelsMembrane PotentialsMembrane ProteinsNeuritesNeuronsNeuropeptidesNeurotransmitter AgentsPotassium ChannelsStereotyped BehaviorTetradecanoylphorbol AcetateConceptsBag cell neuronsCell neuronsAction potentialsElectrical stimulationVoltage-activated calcium currentsOnset of afterdischargePowerful inhibitory influenceIntact abdominal gangliaIon substitution experimentsVoltage-clamp experimentsAfferent nervesProtein kinase C. 5Channel blockersCalcium currentPrimary cell culturesAbdominal ganglionInhibitory influenceAfterdischargesCyclic AMP analogueFMRFaOutward currentsNeuronal processesNeuronsAplysia bag cell neuronsReversal potential
1992
Expression of the H-ras oncogene induces potassium conductance and neuron-specific potassium channel mRNAs in the AtT20 cell line
Hemmick L, Perney T, Flamm R, Kaczmarek L, Birnberg N. Expression of the H-ras oncogene induces potassium conductance and neuron-specific potassium channel mRNAs in the AtT20 cell line. Journal Of Neuroscience 1992, 12: 2007-2014. PMID: 1607925, PMCID: PMC6575920, DOI: 10.1523/jneurosci.12-06-02007.1992.Peer-Reviewed Original ResearchMeSH KeywordsElectric ConductivityElectrophysiologyGene ExpressionGenes, rasNeuronsPotassiumPotassium ChannelsRNA, MessengerTumor Cells, CulturedConceptsRas-transfected cellsAtT20 cell lineAtT20 cellsEJ-ras oncogeneCell linesPotassium channelsVoltage-dependent potassium channelsRas proteinsPituitary-derived cellsMRNA speciesPlasma membraneSpliced productsPotassium channel mRNASame geneChannel mRNADifferential expressionPotassium currentExcitable cellsVoltage-dependent potassium currentsTwo- to threefold increaseMRNAOncogeneSpeciesExpressionPhenotype
1991
Neuropeptide inhibition of voltage-gated calcium channels mediated by mobilization of intracellular calcium
Kramer R, Kaczmarek L, Levitan E. Neuropeptide inhibition of voltage-gated calcium channels mediated by mobilization of intracellular calcium. Neuron 1991, 6: 557-563. PMID: 1849723, DOI: 10.1016/0896-6273(91)90058-8.Peer-Reviewed Original ResearchConceptsThyrotropin-releasing hormoneVoltage-gated calcium channelsVoltage-gated Ca2Protein kinase CInactivation of Ca2Pituitary tumor cellsVariety of agentsHormone secretionNeurotransmitter inhibitionIntracellular calciumResult of Ca2Calcium channelsIntracellular Ca2Inhibits Ca2Kinase CEndocrine cellsRoutine useTumor cellsPatch-clamp electrodesPlasma membrane channelsDependent inactivationInhibitionHormoneSecretionCa2
1989
Inhibitors of protein kinase C prevent enhancement of calcium current and action potentials in peptidergic neurons of Aplysia
Conn P, Strong J, Kaczmarek L. Inhibitors of protein kinase C prevent enhancement of calcium current and action potentials in peptidergic neurons of Aplysia. Journal Of Neuroscience 1989, 9: 480-487. PMID: 2918372, PMCID: PMC6569798, DOI: 10.1523/jneurosci.09-02-00480.1989.Peer-Reviewed Original Research
1988
Inositol trisphosphate releases intracellularly stored calcium and modulates ion channels in molluscan neurons
Fink L, Connor J, Kaczmarek L. Inositol trisphosphate releases intracellularly stored calcium and modulates ion channels in molluscan neurons. Journal Of Neuroscience 1988, 8: 2544-2555. PMID: 2470874, PMCID: PMC6569530, DOI: 10.1523/jneurosci.08-07-02544.1988.Peer-Reviewed Original ResearchConceptsBag cell neuronsCell neuronsIntracellular calciumAction potentialsFluorescent calcium indicator fura-2Inositol trisphosphateCalcium indicator fura-2Intracellular calcium levelsIndicator fura-2Non-neuronal cellsCell-attached patch-clamp techniquePatch-clamp techniqueMicroinjection of inositolCultured bag cell neuronsHydrolysis of phosphoinositidesCalcium-containing mediumElectrophysiological effectsInjection of inositolFura-2Calcium levelsExtracellular calciumIsolated neuronsMolluscan neuronsCytosolic calciumTransient hyperpolarization
1987
Alpha bag cell peptide directly modulates the excitability of the neurons that release it
Kauer J, Fisher T, Kaczmarek L. Alpha bag cell peptide directly modulates the excitability of the neurons that release it. Journal Of Neuroscience 1987, 7: 3623-3632. PMID: 2824716, PMCID: PMC6569037, DOI: 10.1523/jneurosci.07-11-03623.1987.Peer-Reviewed Original ResearchConceptsAlpha-bag cell peptideBag cell neuronsAlpha-BCPCell neuronsBag cell peptidesPotassium currentCell peptidesVoltage-dependent potassium currentsCAMP levelsVoltage-dependent outward currentIntact abdominal gangliaBag cell clustersAdenylate cyclase activator forskolinAbility of forskolinCyclase activator forskolinLevels of cAMPVoltage-clamp experimentsElectrophysiological actionsIntracellular cAMP levelsImmunohistochemical stainingIntact gangliaAbdominal ganglionPhosphodiesterase inhibitorPharmacological elevationOutward currents
1985
Peptidergic neurons of Aplysia lose their response to cyclic adenosine 3':5'-monophosphate during a prolonged refractory period
Kauer J, Kaczmarek L. Peptidergic neurons of Aplysia lose their response to cyclic adenosine 3':5'-monophosphate during a prolonged refractory period. Journal Of Neuroscience 1985, 5: 1339-1345. PMID: 2987438, PMCID: PMC6565048, DOI: 10.1523/jneurosci.05-05-01339.1985.Peer-Reviewed Original Research