2012
Regulation of Neuronal Excitability by Interaction of Fragile X Mental Retardation Protein with Slack Potassium Channels
Zhang Y, Brown MR, Hyland C, Chen Y, Kronengold J, Fleming MR, Kohn AB, Moroz LL, Kaczmarek LK. Regulation of Neuronal Excitability by Interaction of Fragile X Mental Retardation Protein with Slack Potassium Channels. Journal Of Neuroscience 2012, 32: 15318-15327. PMID: 23115170, PMCID: PMC3518385, DOI: 10.1523/jneurosci.2162-12.2012.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnisomycinAplysiaCHO CellsCloning, MolecularCricetinaeCricetulusElectrophysiological PhenomenaFragile X Mental Retardation ProteinImmunohistochemistryImmunoprecipitationNeuronsPatch-Clamp TechniquesPotassium ChannelsProtein Synthesis InhibitorsRNA InterferenceRNA, Small InterferingSodiumSynapsesConceptsNeuronal excitabilitySlack potassium channelsTetrodotoxin-sensitive componentCurrent-clamp recordingsSlack channelsMental retardation proteinBag cell neuronsSustained componentIntracellular injectionNeuronal firingInhibitory periodSynaptic stimulationPotassium currentCell neuronsAction potentialsOutward currentsPotassium channelsProlonged changesNeuronsAplysia bag cell neuronsProtein synthesis inhibitor anisomycinExcitabilityFragile X Mental Retardation ProteinCommon formIntellectual disability
2008
Na+-mediated coupling between AMPA receptors and KNa channels shapes synaptic transmission
Nanou E, Kyriakatos A, Bhattacharjee A, Kaczmarek LK, Paratcha G, Manira A. Na+-mediated coupling between AMPA receptors and KNa channels shapes synaptic transmission. Proceedings Of The National Academy Of Sciences Of The United States Of America 2008, 105: 20941-20946. PMID: 19095801, PMCID: PMC2634910, DOI: 10.1073/pnas.0806403106.Peer-Reviewed Original Research
2005
Actions of BAX on Mitochondrial Channel Activity and on Synaptic Transmission
Jonas EA, Hardwick JM, Kaczmarek LK. Actions of BAX on Mitochondrial Channel Activity and on Synaptic Transmission. Antioxidants & Redox Signaling 2005, 7: 1092-1100. PMID: 16115013, DOI: 10.1089/ars.2005.7.1092.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisBcl-2-Associated X ProteinBcl-X ProteinCell MembraneElectrophysiologyIntracellular MembranesLiposomesLoligoMitochondriaMultigene FamilyNeurotransmitter AgentsPatch-Clamp TechniquesPeptidesPresynaptic TerminalsProtein Structure, TertiarySynapsesSynaptic TransmissionTime FactorsConceptsMitochondrial membraneBcl-2 family proteins BaxCell deathOuter mitochondrial membraneAction of BaxMitochondrial channel activityChannel activityNormal physiological settingsAntiapoptotic Bcl-xL proteinBcl-xL proteinDeath channelMitochondrial architectureMitochondrial channelsProapoptotic fragmentsLarge conductance channelPresynaptic terminalsBcl-xL.Proapoptotic proteinsAlternative functionsProtein BaxPhysiological settingsPhysiological roleSynaptic transmissionBaxNeurotransmitter releaseRegulation of the timing of MNTB neurons by short-term and long-term modulation of potassium channels
Kaczmarek LK, Bhattacharjee A, Desai R, Gan L, Song P, von Hehn CA, Whim MD, Yang B. Regulation of the timing of MNTB neurons by short-term and long-term modulation of potassium channels. Hearing Research 2005, 206: 133-145. PMID: 16081004, DOI: 10.1016/j.heares.2004.11.023.Peer-Reviewed Original ResearchConceptsAnteroventral cochlear nucleusPotassium channelsAuditory pathwayAction potentialsCentral auditory pathwayVoltage-dependent potassium channelsMammalian auditory pathwayAmount of neurotransmitterProtein phosphorylationMNTB neuronsGene expressionBushy cellsPrincipal neuronsTrapezoid bodyCochlear nucleusIntrinsic excitabilityMedial nucleusVoltage-dependent channelsFiring patternsNeuronsAmplitude of currentsKv1 familySound stimuliLong-term modulationSound localization
2004
Exposure to Hypoxia Rapidly Induces Mitochondrial Channel Activity within a Living Synapse*
Jonas EA, Hickman JA, Hardwick JM, Kaczmarek LK. Exposure to Hypoxia Rapidly Induces Mitochondrial Channel Activity within a Living Synapse*. Journal Of Biological Chemistry 2004, 280: 4491-4497. PMID: 15561723, DOI: 10.1074/jbc.m410661200.Peer-Reviewed Original ResearchConceptsMitochondrial channel activityMitochondrial membraneChannel activityBcl-xLBcl-2 family proteinsPro-apoptotic fragmentsOuter mitochondrial membraneTrigger cell deathZ-VAD-FMKBenzyloxycarbonyl-VADFamily proteinsSynaptic responsesMulticonductance channelLarge conductance channelFluoromethyl ketoneCell deathMinutes of hypoxiaResponses of neuronsNeuronal functionSquid giant synapseSynaptic mitochondriaEarly eventsSynaptic functionHypoxic conditionsNeuronal death
2003
How to Make a Relationship Last Release Sites with Different Levels of Commitment
Kaczmarek LK. How to Make a Relationship Last Release Sites with Different Levels of Commitment. Neuron 2003, 40: 7-9. PMID: 14527428, DOI: 10.1016/s0896-6273(03)00599-3.Peer-Reviewed Original Research
1997
The Secretion of Classical and Peptide Cotransmitters from a Single Presynaptic Neuron Involves a Synaptobrevin-Like Molecule
Whim M, Niemann H, Kaczmarek L. The Secretion of Classical and Peptide Cotransmitters from a Single Presynaptic Neuron Involves a Synaptobrevin-Like Molecule. Journal Of Neuroscience 1997, 17: 2338-2347. PMID: 9065494, PMCID: PMC6573516, DOI: 10.1523/jneurosci.17-07-02338.1997.Peer-Reviewed Original ResearchMeSH KeywordsAcetylcholineAnimalsAplysiaCalciumCells, CulturedCoculture TechniquesElectric ConductivityGanglia, InvertebrateKineticsMagnesiumMembrane PotentialsMembrane ProteinsNerve Tissue ProteinsNeuronsNeurons, AfferentNeuropeptidesPatch-Clamp TechniquesPresynaptic TerminalsR-SNARE ProteinsRecombinant ProteinsSynapsesTetanus ToxinConceptsClassical transmittersSingle presynaptic neuronRelease of neuropeptidesSingle action potentialPresynaptic release sitesSecretion of peptidesNeuron B2Peptidergic synapsesSynaptic typesSensory neuronsPresynaptic neuronsTetanus toxinPeptide cotransmittersAction potentialsPresynaptic injectionSecretionNeuronsMolecular mechanismsSynapseTypes of transmittersB2CotransmitterNeuropeptidesPeptidesRelease
1981
Serotonergic inhibition of afterdischarge in peptidergic bag cells
Jennings K, Host J, Kaczmarek L, Strumwasser F. Serotonergic inhibition of afterdischarge in peptidergic bag cells. Developmental Neurobiology 1981, 12: 579-590. PMID: 7310396, DOI: 10.1002/neu.480120606.Peer-Reviewed Original ResearchConceptsEgg-laying hormoneAfterdischarge activityConnective nervesBag cellsSpike frequencyPotassium channel blocker tetraethylammoniumEffects of serotoninBag cell afterdischargeChannel blocker tetraethylammoniumDose-dependent mannerResult of serotoninPeptide hormone releaseNeuroendocrine bag cellsSerotonergic inhibitionSerotonin inhibitionSerotonergic synapsesSerotonergic inputBag cell neuronsHormone releaseIntracellular recordingsSerotonin receptorsBlocker tetraethylammoniumD-butaclamolAfterdischargesElectrical stimulation