2023
Interaction Between HCN and Slack Channels Regulates mPFC Pyramidal Cell Excitability in Working Memory Circuits
Wu J, El-Hassar L, Datta D, Thomas M, Zhang Y, Jenkins D, DeLuca N, Chatterjee M, Gribkoff V, Arnsten A, Kaczmarek L. Interaction Between HCN and Slack Channels Regulates mPFC Pyramidal Cell Excitability in Working Memory Circuits. Molecular Neurobiology 2023, 61: 2430-2445. PMID: 37889366, DOI: 10.1007/s12035-023-03719-8.Peer-Reviewed Original ResearchPFC pyramidal neuronsPyramidal cellsHCN channelsPrefrontal cortexPyramidal neuronsNeuronal firingSlack channelsPyramidal cell excitabilityRat prefrontal cortexPFC pyramidal cellsCell linesNon-selective cation channelsRecurrent excitatory connectionsCortical extractsNeuronal depolarizationNeuronal excitabilityPharmacological blockersSpecific blockerDendritic spinesKNa channelsCell excitabilityPostsynaptic spinesPersistent firingExcitatory connectionsNeural circuits
2020
Impaired motor skill learning and altered seizure susceptibility in mice with loss or gain of function of the Kcnt1 gene encoding Slack (KNa1.1) Na+-activated K+ channels
Quraishi IH, Mercier MR, McClure H, Couture RL, Schwartz ML, Lukowski R, Ruth P, Kaczmarek LK. Impaired motor skill learning and altered seizure susceptibility in mice with loss or gain of function of the Kcnt1 gene encoding Slack (KNa1.1) Na+-activated K+ channels. Scientific Reports 2020, 10: 3213. PMID: 32081855, PMCID: PMC7035262, DOI: 10.1038/s41598-020-60028-z.Peer-Reviewed Original ResearchConceptsMaximum electroshock-induced seizuresEpilepsy of infancyPentylenetetrazole-induced seizuresVideo-EEG monitoringElectroshock-induced seizuresForms of epilepsyWild-type miceSlack channelsImpaired motor skillsProcedural motor learningMotor skillsWild-type animalsSevere intellectual disabilityOpen-field behaviorCortical seizuresKCNT1 geneSpontaneous seizuresFocal seizuresSeizure susceptibilitySeizure activityType miceMouse modelAnimal modelsInterictal spikesSeizures
2019
Phactr1 regulates Slack (KCNT1) channels via protein phosphatase 1 (PP1)
Ali SR, Malone TJ, Zhang Y, Prechova M, Kaczmarek LK. Phactr1 regulates Slack (KCNT1) channels via protein phosphatase 1 (PP1). The FASEB Journal 2019, 34: 1591-1601. PMID: 31914597, PMCID: PMC6956700, DOI: 10.1096/fj.201902366r.Peer-Reviewed Original ResearchConceptsProtein phosphatase 1Phosphatase 1Binding of PP1C-terminusCytoplasmic signaling proteinsCytoplasmic C-terminusActin-binding proteinsSlack channelsPKC phosphorylation sitesPhosphoprotein substratesDisease-causing mutationsPhosphorylation sitesSignaling proteinsSlack currentsHuman mutationsSodium-activated potassium channelsPHACTR1Slack genePotassium channelsProteinActinMutationsPatch-clamp recordingsCentral nervous systemMutants
2016
Stimulation of Slack K+ Channels Alters Mass at the Plasma Membrane by Triggering Dissociation of a Phosphatase-Regulatory Complex
Fleming MR, Brown MR, Kronengold J, Zhang Y, Jenkins DP, Barcia G, Nabbout R, Bausch AE, Ruth P, Lukowski R, Navaratnam DS, Kaczmarek LK. Stimulation of Slack K+ Channels Alters Mass at the Plasma Membrane by Triggering Dissociation of a Phosphatase-Regulatory Complex. Cell Reports 2016, 16: 2281-2288. PMID: 27545877, PMCID: PMC5123741, DOI: 10.1016/j.celrep.2016.07.024.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAnimalsBiosensing TechniquesBithionolBridged Bicyclo Compounds, HeterocyclicCell MembraneCerebral CortexFragile X Mental Retardation ProteinGene Expression RegulationHEK293 CellsHumansIon TransportMiceMice, KnockoutMicrofilament ProteinsMutationNerve Tissue ProteinsNeuronsPatch-Clamp TechniquesPhosphorylationPotassium ChannelsPotassium Channels, Sodium-ActivatedPrimary Cell CultureProtein BindingRNA, Small InterferingSignal TransductionThiazolidinesXenopus laevisConceptsProtein phosphatase 1Plasma membraneProtein kinase C.C-terminal residuesPhactr-1Potassium channelsPhosphatase 1Terminal domainSlack channelsHuman mutationsKinase C.Sodium-activated potassium channelsPharmacological activatorsOptical biosensor assayChannel stimulationSlack currentsBiosensor assaysMembraneMutantsPhosphorylationIntellectual disabilityProteinMutationsSevere intellectual disabilityActivator
2015
The sodium-activated potassium channel Slack is required for optimal cognitive flexibility in mice
Bausch AE, Dieter R, Nann Y, Hausmann M, Meyerdierks N, Kaczmarek LK, Ruth P, Lukowski R. The sodium-activated potassium channel Slack is required for optimal cognitive flexibility in mice. Learning & Memory 2015, 22: 323-335. PMID: 26077685, PMCID: PMC4478330, DOI: 10.1101/lm.037820.114.Peer-Reviewed Original ResearchConceptsFragile X Mental Retardation ProteinCognitive flexibilityFragile X syndromeNormal working memoryAspects of memoryIntellectual disabilityMental retardation proteinSpatial learning capabilitiesSlack channelsWorking memoryBehavioral tasksReference memorySodium-activated potassium channel SlackHigher brain functionsUnfamiliar situationsBrain functionSevere intellectual disabilityMemoryIntellectual developmentSodium-activated potassium channelsNull mouse modelGeneral locomotor activityX syndromeProper functionLearning capabilities
2014
Emerging role of the KCNT1 Slack channel in intellectual disability
Kim GE, Kaczmarek LK. Emerging role of the KCNT1 Slack channel in intellectual disability. Frontiers In Cellular Neuroscience 2014, 8: 209. PMID: 25120433, PMCID: PMC4112808, DOI: 10.3389/fncel.2014.00209.Peer-Reviewed Original ResearchIntellectual disabilitySlack channelsChannel activityEarly-onset epilepsyMaintained stimulationOnset epilepsyFragile X syndromeCommon causeNeuronal excitabilityEpileptic disordersAnimal modelsIntellectual impairmentX syndromeDisabilityMental retardation proteinSyndromePhysiological roleEpilepsyKCNT1ExcitabilityNeuronsBrainImpairmentRoleActivity
2013
Slack, Slick, and Sodium‐Activated Potassium Channels
Kaczmarek LK. Slack, Slick, and Sodium‐Activated Potassium Channels. International Scholarly Research Notices 2013, 2013: 354262. PMID: 24319675, PMCID: PMC3850776, DOI: 10.1155/2013/354262.Peer-Reviewed Original ResearchSodium-activated potassium currentPotassium channelsMore action potentialsCentral nervous systemAMPA receptorsNeuronal plasticityNative neuronsNervous systemNeurotransmitter receptorsSlick channelsIntracellular sodiumPotassium currentAction potentialsIntellectual functionSlack channelsReceptorsHuman mutationsSevere defectsCentral roleNeurons
2012
Regulation of Neuronal Excitability by Interaction of Fragile X Mental Retardation Protein with Slack Potassium Channels
Zhang Y, Brown MR, Hyland C, Chen Y, Kronengold J, Fleming MR, Kohn AB, Moroz LL, Kaczmarek LK. Regulation of Neuronal Excitability by Interaction of Fragile X Mental Retardation Protein with Slack Potassium Channels. Journal Of Neuroscience 2012, 32: 15318-15327. PMID: 23115170, PMCID: PMC3518385, DOI: 10.1523/jneurosci.2162-12.2012.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnisomycinAplysiaCHO CellsCloning, MolecularCricetinaeCricetulusElectrophysiological PhenomenaFragile X Mental Retardation ProteinImmunohistochemistryImmunoprecipitationNeuronsPatch-Clamp TechniquesPotassium ChannelsProtein Synthesis InhibitorsRNA InterferenceRNA, Small InterferingSodiumSynapsesConceptsNeuronal excitabilitySlack potassium channelsTetrodotoxin-sensitive componentCurrent-clamp recordingsSlack channelsMental retardation proteinBag cell neuronsSustained componentIntracellular injectionNeuronal firingInhibitory periodSynaptic stimulationPotassium currentCell neuronsAction potentialsOutward currentsPotassium channelsProlonged changesNeuronsAplysia bag cell neuronsProtein synthesis inhibitor anisomycinExcitabilityFragile X Mental Retardation ProteinCommon formIntellectual disability
2009
The N-Terminal Domain of Slack Determines the Formation and Trafficking of Slick/Slack Heteromeric Sodium-Activated Potassium Channels
Chen H, Kronengold J, Yan Y, Gazula VR, Brown MR, Ma L, Ferreira G, Yang Y, Bhattacharjee A, Sigworth FJ, Salkoff L, Kaczmarek LK. The N-Terminal Domain of Slack Determines the Formation and Trafficking of Slick/Slack Heteromeric Sodium-Activated Potassium Channels. Journal Of Neuroscience 2009, 29: 5654-5665. PMID: 19403831, PMCID: PMC3688047, DOI: 10.1523/jneurosci.5978-08.2009.Peer-Reviewed Original ResearchConceptsTerminal domainN-terminal domainAlternative splice variantsPotassium channelsSubcellular localizationPlasma membraneMolecular explanationHeteromer formationSplice variantsHeteromeric channelsDistinct rolesSingle-channel levelSubunitsUnitary conductanceCentral neuronsSlack channelsImmunocytochemical studyFiring patternsDomainLocalizationNeuronsGenesTraffickingChannel levelHomomers
2007
Slack and Slick KNa Channels Regulate the Accuracy of Timing of Auditory Neurons
Yang B, Desai R, Kaczmarek LK. Slack and Slick KNa Channels Regulate the Accuracy of Timing of Auditory Neurons. Journal Of Neuroscience 2007, 27: 2617-2627. PMID: 17344399, PMCID: PMC6672517, DOI: 10.1523/jneurosci.5308-06.2007.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsAnimals, NewbornAuditory PathwaysBithionolBrain StemComputer SimulationElectric ConductivityElectric StimulationElectrophysiologyIn Vitro TechniquesMiceModels, NeurologicalNerve Tissue ProteinsNeuronsNeurons, AfferentPotassium ChannelsPotassium Channels, Sodium-ActivatedReaction TimeSodium
2006
Pharmacological activation and inhibition of Slack (Slo2.2) channels
Yang B, Gribkoff VK, Pan J, Damagnez V, Dworetzky SI, Boissard CG, Bhattacharjee A, Yan Y, Sigworth FJ, Kaczmarek LK. Pharmacological activation and inhibition of Slack (Slo2.2) channels. Neuropharmacology 2006, 51: 896-906. PMID: 16876206, DOI: 10.1016/j.neuropharm.2006.06.003.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnti-Infective Agents, LocalBepridilBithionolCalcium Channel BlockersCell Line, TransformedDose-Response Relationship, DrugDose-Response Relationship, RadiationElectric StimulationEnzyme ActivationEnzyme InhibitorsHumansMembrane PotentialsOocytesPatch-Clamp TechniquesPotassium Channels, Calcium-ActivatedQuinidineTransfectionXenopusConceptsSlack channelsConcentration-dependent mannerIschemic injuryPharmacological activationKNa channelsMammalian brainFiring ratePharmacological propertiesChannel subunitsReversible increaseChannel activityCell linesBepridilHEK cellsRobust activatorNeuronsStable cell linesInhibitionExcised patchesXenopus oocytesPresent studyBithionolChannel openingSpecific roleMembrane patches
1998
Formation of intermediate-conductance calcium-activated potassium channels by interaction of Slack and Slo subunits
Joiner W, Tang M, Wang L, Dworetzky S, Boissard C, Gan L, Gribkoff V, Kaczmarek L. Formation of intermediate-conductance calcium-activated potassium channels by interaction of Slack and Slo subunits. Nature Neuroscience 1998, 1: 462-469. PMID: 10196543, DOI: 10.1038/2176.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsCaenorhabditis elegansCaenorhabditis elegans ProteinsElectric ConductivityIntermediate-Conductance Calcium-Activated Potassium ChannelsIsomerismLarge-Conductance Calcium-Activated Potassium ChannelsMolecular Sequence DataNerve Tissue ProteinsPotassium ChannelsPotassium Channels, Calcium-ActivatedPotassium Channels, Sodium-ActivatedConceptsCalcium-activated potassium channelsIntracellular calciumNervous systemIntermediate-conductance calcium-activated potassium channelsPotassium channelsLarge-conductance calcium-activated potassium channelsControl of excitabilitySlo subunitIntermediate conductance channelPotassium channel genesPharmacological propertiesIntermediate conductanceCytoplasmic calciumChannel subunitsSlo channelsSlack channelsChannel genesSingle-channel conductanceUnitary conductanceCalciumExcitabilitySLOSecretion