2023
Longitudinal single-cell transcriptional dynamics throughout neurodegeneration in SCA1
Tejwani L, Ravindra N, Lee C, Cheng Y, Nguyen B, Luttik K, Ni L, Zhang S, Morrison L, Gionco J, Xiang Y, Yoon J, Ro H, Haidery F, Grijalva R, Bae E, Kim K, Martuscello R, Orr H, Zoghbi H, McLoughlin H, Ranum L, Shakkottai V, Faust P, Wang S, van Dijk D, Lim J. Longitudinal single-cell transcriptional dynamics throughout neurodegeneration in SCA1. Neuron 2023, 112: 362-383.e15. PMID: 38016472, PMCID: PMC10922326, DOI: 10.1016/j.neuron.2023.10.039.Peer-Reviewed Original ResearchReduction of Nemo-like kinase increases lysosome biogenesis and ameliorates TDP-43-related neurodegeneration
Tejwani L, Jung Y, Kokubu H, Sowmithra S, Ni L, Lee C, Sanders B, Lee P, Xiang Y, Luttik K, Soriano A, Yoon J, Park J, Ro H, Ju H, Liao C, Tieze S, Rigo F, Jafar-Nejad P, Lim J. Reduction of Nemo-like kinase increases lysosome biogenesis and ameliorates TDP-43-related neurodegeneration. Journal Of Clinical Investigation 2023, 133: e138207. PMID: 37384409, PMCID: PMC10425213, DOI: 10.1172/jci138207.Peer-Reviewed Original ResearchConceptsAmyotrophic lateral sclerosisTDP-43-related neurodegenerationNeurodegenerative disordersTransactive response DNA-binding protein 43Sporadic amyotrophic lateral sclerosisDNA-binding protein 43Subset of patientsTDP-43 speciesTDP-43 inclusionsDistinct mouse modelsTDP-43 proteinopathyFamilial amyotrophic lateral sclerosisNemo-like kinaseMultiple neurodegenerative disordersAutophagy/lysosome pathwayTDP-43-positive aggregatesALS patientsALS casesSporadic ALSPharmacological reductionProtein 43Lateral sclerosisMouse modelParkinson's diseaseTDP-43
2022
A Novel Missense Mutation in ERCC8 Co-Segregates with Cerebellar Ataxia in a Consanguineous Pakistani Family
Gauhar Z, Tejwani L, Abdullah U, Saeed S, Shafique S, Badshah M, Choi J, Dong W, Nelson-Williams C, Lifton RP, Lim J, Raja GK. A Novel Missense Mutation in ERCC8 Co-Segregates with Cerebellar Ataxia in a Consanguineous Pakistani Family. Cells 2022, 11: 3090. PMID: 36231052, PMCID: PMC9564319, DOI: 10.3390/cells11193090.Peer-Reviewed Original ResearchConceptsAutosomal recessive cerebellar ataxiaCerebellar ataxiaProgressive gait ataxiaMagnetic resonance imagingT mutationHeterogeneous rare disordersNovel homozygous missense mutationWhole-exome sequencingMissense mutationsGait ataxiaMovement disordersDifferential diagnosisRare disorderCerebellar atrophyHomozygous missense mutationConsanguineous Pakistani familyNovel missense mutationResonance imagingBody imbalanceExome sequencingYoung adultsHomozygous mutationPakistani familyAtaxiaType ADifferential effects of Wnt-β-catenin signaling in Purkinje cells and Bergmann glia in spinocerebellar ataxia type 1
Luttik K, Tejwani L, Ju H, Driessen T, Smeets CJLM, Edamakanti CR, Khan A, Yun J, Opal P, Lim J. Differential effects of Wnt-β-catenin signaling in Purkinje cells and Bergmann glia in spinocerebellar ataxia type 1. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2208513119. PMID: 35969780, PMCID: PMC9407543, DOI: 10.1073/pnas.2208513119.Peer-Reviewed Original ResearchConceptsWnt-β-cateninSpinocerebellar ataxia type 1Ataxia type 1Cell typesWnt-β-catenin signalingWnt-β-catenin pathwayDifferent cell typesMultiple cell typesSCA1 mouse modelCerebellar cell populationsAtaxin-1Genetic manipulationCerebellar patterningBergmann gliaSCA1 pathogenesisSpecific neuronal populationsPurkinje cellsCerebellar neurodegenerationDistinct responsesCell populationsPathwayNeurodegenerative diseasesMouse cerebellumCritical roleActivationChapter 8 Exploring the role of protein quality control in aging and age-associated neurodegenerative diseases
Gogia N, Olmos V, Haidery F, Luttik K, Tejwani L, Lim J. Chapter 8 Exploring the role of protein quality control in aging and age-associated neurodegenerative diseases. 2022, 139-171. DOI: 10.1016/b978-0-323-90235-9.00012-4.ChaptersPQC systemAge-associated neurodegenerative diseasesAge-related neurodegenerative diseasesProtein quality control systemCell deathNeurodegenerative diseasesProtein quality controlHallmark of agingAlters cellular functionCellular proteomeCellular functionsProtein misfoldingQuality control systemCellular agingBiological processesPostmitotic natureNeuronal cell deathProteinDisease symptomsEfficient clearanceTherapeutic targetCellsDisease conditionsNervous system tissueEffective therapeutics
2021
Microglia regulate brain Progranulin levels through the endocytosis-lysosomal pathway
Dong T, Tejwani L, Jung Y, Kokubu H, Luttik K, Driessen TM, Lim J. Microglia regulate brain Progranulin levels through the endocytosis-lysosomal pathway. JCI Insight 2021, 6: e136147. PMID: 34618685, PMCID: PMC8663778, DOI: 10.1172/jci.insight.136147.Peer-Reviewed Original ResearchConceptsPGRN levelsNovel potential therapeutic targetFrontotemporal lobar degenerationPotential therapeutic targetNeuronal ceroid lipofuscinosisPGRN deficiencyPGRN expressionLysosomal pathwayProgranulin levelsPathological changesHaploinsufficient miceTherapeutic targetMicrogliaNeuropathological phenotypeAlzheimer's diseaseProgranulinCeroid lipofuscinosisGlycoprotein progranulinNeurodegenerative diseasesDiseaseMiceGenetic alterationsNemo-like kinaseGenetic interaction studiesGenetic variantsCortical organoids model early brain development disrupted by 16p11.2 copy number variants in autism
Urresti J, Zhang P, Moran-Losada P, Yu N, Negraes P, Trujillo C, Antaki D, Amar M, Chau K, Pramod A, Diedrich J, Tejwani L, Romero S, Sebat J, Yates III J, Muotri A, Iakoucheva L. Cortical organoids model early brain development disrupted by 16p11.2 copy number variants in autism. Molecular Psychiatry 2021, 26: 7560-7580. PMID: 34433918, PMCID: PMC8873019, DOI: 10.1038/s41380-021-01243-6.Peer-Reviewed Original ResearchConceptsCortical organoidsCommon copy number variationNeural progenitorsRatio of neuronsPotential neurobiological mechanismsOrganoid sizeEarly brain developmentSynapse numberNeuronal maturationMigration deficitsBrain developmentNeurodevelopmental processesIon channel activityNeurobiological mechanismsNeuron migrationNeocortical developmentSkin fibroblastsChannel activityPatientsEarly neurogenesisMicrocephaly phenotypeNeurite outgrowthNeuronsAutism spectrum disorderSmall GTPase RhoA
2020
Pharmacological reversal of synaptic and network pathology in human MECP2‐KO neurons and cortical organoids
Trujillo CA, Adams JW, Negraes PD, Carromeu C, Tejwani L, Acab A, Tsuda B, Thomas CA, Sodhi N, Fichter KM, Romero S, Zanella F, Sejnowski TJ, Ulrich H, Muotri AR. Pharmacological reversal of synaptic and network pathology in human MECP2‐KO neurons and cortical organoids. EMBO Molecular Medicine 2020, 13: emmm202012523. PMID: 33501759, PMCID: PMC7799367, DOI: 10.15252/emmm.202012523.Peer-Reviewed Original ResearchConceptsRett syndromeCortical organoidsPredominant etiologyNeurodevelopmental impairmentPharmacological reversalPHA-543613Neuropathologic phenotypeSynaptic dysregulationClinical studiesHuman pluripotent stem cell technologySymptomatic severityHuman neuronsMeCP2 deficiencyCandidate therapeuticsBrain mosaicismNetwork pathologyPharmacological compoundsPluripotent stem cell (iPSC) technologyNeurodevelopmental disordersMECP2 mutationsNeuropathologyMECP2 geneNeuronsCellular mosaicismStem cell technologyGenetic Risk of Autism Spectrum Disorder in a Pakistani Population
Khalid M, Raza H, Driessen T, Lee P, Tejwani L, Sami A, Nawaz M, Baig S, Lim J, Raja G. Genetic Risk of Autism Spectrum Disorder in a Pakistani Population. Genes 2020, 11: 1206. PMID: 33076578, PMCID: PMC7602870, DOI: 10.3390/genes11101206.Peer-Reviewed Original ResearchPathogenic mechanisms underlying spinocerebellar ataxia type 1
Tejwani L, Lim J. Pathogenic mechanisms underlying spinocerebellar ataxia type 1. Cellular And Molecular Life Sciences 2020, 77: 4015-4029. PMID: 32306062, PMCID: PMC7541529, DOI: 10.1007/s00018-020-03520-z.Peer-Reviewed Original ResearchConceptsGait impairmentSpinocerebellar ataxiaHeterogenous clinical manifestationsProgressive gait impairmentAdditional clinical featuresIon channel dysfunctionKey cellular changesCommon gait impairmentNervous system biologyHereditary cerebellar ataxiaClinical featuresClinical manifestationsCerebellar featuresCerebellar atrophyAutosomal dominant spinocerebellar ataxiaChannel dysfunctionPathogenic mechanismsDisease pathogenesisMolecular pathogenesisCerebellar ataxiaType 1Spinocerebellar ataxia type 1Central mechanismsAtaxia type 1Dominant spinocerebellar ataxias
2018
Association of CACNA1C with bipolar disorder among the Pakistani population
Khalid M, Driessen TM, Lee JS, Tejwani L, Rasool A, Saqlain M, Shiaq PA, Hanif M, Nawaz A, DeWan AT, Raja GK, Lim J. Association of CACNA1C with bipolar disorder among the Pakistani population. Gene 2018, 664: 119-126. PMID: 29684488, PMCID: PMC5970093, DOI: 10.1016/j.gene.2018.04.061.Peer-Reviewed Original ResearchConceptsBipolar disorderPakistani populationSingle nucleotide polymorphismsRisk allelesRisk score assessmentMore risk allelesScore assessmentControl individualsSignificant associationCACNA1CAssociationGenotyping resultsDisordersRs1006737Present studyNucleotide polymorphismsEthnic groupsPopulationAssociation of CACNA1CProtein-protein interaction networkRs9804190ANK3Blocking Zika virus vertical transmission
Mesci P, Macia A, Moore SM, Shiryaev SA, Pinto A, Huang CT, Tejwani L, Fernandes IR, Suarez NA, Kolar MJ, Montefusco S, Rosenberg SC, Herai RH, Cugola FR, Russo FB, Sheets N, Saghatelian A, Shresta S, Momper JD, Siqueira-Neto JL, Corbett KD, Beltrão-Braga PCB, Terskikh AV, Muotri AR. Blocking Zika virus vertical transmission. Scientific Reports 2018, 8: 1218. PMID: 29352135, PMCID: PMC5775359, DOI: 10.1038/s41598-018-19526-4.Peer-Reviewed Original ResearchNeural progenitor cellsZika virusViral burdenVertical transmissionSOF treatmentZika virus vertical transmissionAnti-ZIKV activityAntiviral immune responseImmunodeficient mouse modelHuman neural cell typesHuman neural progenitor cellsCell deathNucleotide analog inhibitorBody of evidenceChronic infectionNeural cell typesImmune responseMouse modelCongenital malformationsAnimal modelsVaccine developmentInfected individualsSofosbuvirProgenitor cellsTreatment
2017
Hunting for the mutant without the MAP(K)
Tejwani L, Lim J. Hunting for the mutant without the MAP(K). Cell Research 2017, 27: 1403-1404. PMID: 29134957, PMCID: PMC5717406, DOI: 10.1038/cr.2017.140.Peer-Reviewed Original ResearchModeling neuro-immune interactions during Zika virus infection
Mesci P, Macia A, LaRock CN, Tejwani L, Fernandes IR, Suarez NA, de A. Zanotto PM, Beltrão-Braga PCB, Nizet V, Muotri AR. Modeling neuro-immune interactions during Zika virus infection. Human Molecular Genetics 2017, 27: 41-52. PMID: 29048558, PMCID: PMC5886060, DOI: 10.1093/hmg/ddx382.Peer-Reviewed Original ResearchConceptsNeuro-immune interactionsZika virus infectionVirus infectionSerious neurologic complicationsAntiviral immune responsePro-inflammatory responseSimilar pro-inflammatory responsesNeural precursor cellsNew therapeutic drugsZIKV pathologyHepatitis CNeurologic complicationsMicroglia interactionsHuman microgliaImmune responseViral infectionBrazilian ZIKVMicrogliaInfectionNeural cellsTherapeutic drugsBirth defectsPrecursor cellsDrugsHuman tissuesModeling of TREX1-Dependent Autoimmune Disease using Human Stem Cells Highlights L1 Accumulation as a Source of Neuroinflammation
Thomas CA, Tejwani L, Trujillo CA, Negraes PD, Herai RH, Mesci P, Macia A, Crow YJ, Muotri AR. Modeling of TREX1-Dependent Autoimmune Disease using Human Stem Cells Highlights L1 Accumulation as a Source of Neuroinflammation. Cell Stem Cell 2017, 21: 319-331.e8. PMID: 28803918, PMCID: PMC5591075, DOI: 10.1016/j.stem.2017.07.009.Peer-Reviewed Original ResearchMeSH KeywordsAstrocytesAutoimmune DiseasesBase SequenceCell ExtractsChildCytosolDNAExodeoxyribonucleasesHumansInfantInfant, NewbornInflammationInterferonsLong Interspersed Nucleotide ElementsMaleMicrocephalyNervous SystemNeural Stem CellsNeuronsOrganoidsPhenotypePhosphoproteinsStem CellsUp-RegulationConceptsThree-prime repair exonuclease 1Aicardi-Goutières syndromeAutoimmune diseasesSource of neuroinflammationType I interferon secretionSystemic lupus erythematosusRepair exonuclease 1Reverse transcriptase inhibitorStem cellsDisease-relevant phenotypesNeuroinflammatory disordersLupus erythematosusTherapeutic regimensCortical organoidsInflammatory responseInterferon secretionRelated disordersObserved neurotoxicityNeural cellsNeurotoxicityDiseaseNeuronsPluripotent stem cellsDisordersHuman stem cellsActivity of Retrotransposons in Stem Cells and Differentiated Cells
Macia A, Tejwani L, Mesci P, Muotri A, Garcia-Perez J. Activity of Retrotransposons in Stem Cells and Differentiated Cells. 2017, 127-156. DOI: 10.1007/978-3-319-48344-3_6.Peer-Reviewed Original ResearchTransposable elementsSelfish DNAHuman genomeTE insertionsEarly embryonic developmental stagesActivity of TEsActivity of retrotransposonsActivity of L1New TE insertionsEmbryonic developmental stagesHuman transposable elementsMammalian genomesGenome stabilityEukaryotic genomesNew genesGenomic regulationGenomic rearrangementsGenomeLINE-1sDifferentiated cellsGerm cellsDevelopmental stagesMobile elementsNew copiesStem cells
2016
Genome Editing in Stem Cells
Tejwani L, Trujillo C, Thomas C, Muotri A. Genome Editing in Stem Cells. 2016, 287-309. DOI: 10.1007/978-3-319-30582-0_17.Peer-Reviewed Original ResearchGenome editingCRISPR/Cas9 systemPost-transcriptional levelPotential genetic therapyWild-type formStudy of geneticsGene functionGenetic functionsHuman genomeDeleterious mutationsParticular genesReverse geneticsCRISPR/Cas9 systemCellular phenomenaGenomeMolecular biologyCellular levelStem cellsEase of programmabilityMonogenic diseasesGenesEditingGeneticsSpecific modifications