1998
Use of liquid chromatography‐electrospray ionization‐tandem mass spectrometry (LC‐ESI‐MS/MS) for routine identification of enzymatically digested proteins separated by sodium dodecyl sulfate‐polyacrylamide gel electrophoresis
Stone K, Deangelis R, LoPresti M, Jones J, Papov V, Williams K. Use of liquid chromatography‐electrospray ionization‐tandem mass spectrometry (LC‐ESI‐MS/MS) for routine identification of enzymatically digested proteins separated by sodium dodecyl sulfate‐polyacrylamide gel electrophoresis. Electrophoresis 1998, 19: 1046-1052. PMID: 9638951, DOI: 10.1002/elps.1150190620.Peer-Reviewed Original ResearchConceptsSodium dodecyl sulfate-polyacrylamide gel electrophoresisQuadrupole ion trap mass spectrometerIon trap mass spectrometerDodecyl sulfate-polyacrylamide gel electrophoresisLow pmol levelSulfate-polyacrylamide gel electrophoresisIonization tandem mass spectrometryTrap mass spectrometerLiquid chromatography-electrospray ionization-tandem mass spectrometryLiquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysisMS/MS approachProtein identificationIonization tandem mass spectrometry analysisFmol levelFacile approachMass spectrometry analysisMass spectrometerEng et alMass spectrometryPmol levelLC-MS/MS approachTryptic digestMS approachSpectrometry analysisGel electrophoresis
1997
Enzymatic cleavage and HPLC peptide mapping of proteins
Williams K, Stone K. Enzymatic cleavage and HPLC peptide mapping of proteins. Molecular Biotechnology 1997, 8: 155-167. PMID: 9406186, DOI: 10.1007/bf02752260.Peer-Reviewed Original Research
1995
Structural specificity of substrate for S-adenosylmethionine protein arginine N-methyltransferases
Rawal N, Rajpurohit R, Lischwe M, Williams K, Paik W, Kim S. Structural specificity of substrate for S-adenosylmethionine protein arginine N-methyltransferases. Biochimica Et Biophysica Acta 1995, 1248: 11-18. PMID: 7536038, DOI: 10.1016/0167-4838(94)00213-z.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsHeterogeneous Nuclear Ribonucleoprotein A1Heterogeneous-Nuclear Ribonucleoprotein Group A-BHeterogeneous-Nuclear RibonucleoproteinsMethylationMolecular Sequence DataMyelin Basic ProteinOligopeptidesPeptide FragmentsProtein-Arginine N-MethyltransferasesRatsRibonucleoproteinsS-AdenosylmethionineSubstrate SpecificityTrypsinConceptsProtein methylase IArginine residuesProtein A1Protein arginine N-methyltransferasesEnzymatic methylationPreferred amino acid sequencesArginine-methylated proteinsProtein arginine N-methyltransferaseHnRNP protein A1Arginine-rich motifAmino acid sequenceArginine N-methyltransferaseN-methyltransferasesRich motifN-terminal fragmentHPLC amino acid analysisC-terminusMethyl acceptorAmino acid analysisDisulfide bridgesS-adenosylmethionineProtein moleculesTrypsin digestionNG-monomethylarginineGood substrate
1992
Identification of amino acid residues at the interface of a bacteriophage T4 regA protein-nucleic acid complex.
Webster K, Keill S, Konigsberg W, Williams K, Spicer E. Identification of amino acid residues at the interface of a bacteriophage T4 regA protein-nucleic acid complex. Journal Of Biological Chemistry 1992, 267: 26097-26103. PMID: 1464621, DOI: 10.1016/s0021-9258(18)35722-3.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBacterial ProteinsBacteriophage T4Base SequenceBinding SitesChromatography, High Pressure LiquidCross-Linking ReagentsMolecular Sequence DataOligoribonucleotidesPeptide FragmentsPlasmidsPromoter Regions, GeneticRNA, MessengerRNA, ViralSequence Homology, Amino AcidTrypsinUltraviolet RaysConceptsCross-linked peptidesProtein-nucleic acid complexesAnion-exchange high-performance liquid chromatographyNucleic acidsIntact proteinHigh-performance liquid chromatographyCross-linked complexGas-phase sequencingPerformance liquid chromatographyAcid complexesExchange high performance liquid chromatographyLiquid chromatographyChemical cleavageBacteriophage T4 regA proteinNucleic acid bindingTryptic peptidesComplexesUltraviolet lightCNBr peptidesPeptidesCN6Amino acid residuesMeasurable affinityAcid bindingAcid
1990
[21] Reversed-phase high-performance liquid chromatography for fractionation of enzymatic digests and chemical cleavage products of proteins
Stone K, Elliott J, Peterson G, McMurray W, Williams K. [21] Reversed-phase high-performance liquid chromatography for fractionation of enzymatic digests and chemical cleavage products of proteins. Methods In Enzymology 1990, 193: 389-412. PMID: 2074828, DOI: 10.1016/0076-6879(90)93429-o.Peer-Reviewed Original ResearchConceptsHigh-performance liquid chromatographyReversed-phase high-performance liquid chromatographyReversed phase high performance liquid chromatographyLiquid chromatographyEnzymatic digestsHigh peak capacityMass spectrometric approachProtein chemistsSpectrometric approachMass spectrometryPeak capacityComplex mixturesMolecular weightChemical cleavageGradient timeCleavage productsChromatographyTryptic peptidesPeptidesDigestsChemistsSpectrometryFractionationProductsPrimary structure
1989
ARPP-21, a cyclic AMP-regulated phosphoprotein enriched in dopamine- innervated brain regions. I. Amino acid sequence of ARPP-21B from bovine caudate nucleus
Williams K, Hemmings H, LoPresti M, Greengard P. ARPP-21, a cyclic AMP-regulated phosphoprotein enriched in dopamine- innervated brain regions. I. Amino acid sequence of ARPP-21B from bovine caudate nucleus. Journal Of Neuroscience 1989, 9: 3631-3637. PMID: 2552036, PMCID: PMC6569913, DOI: 10.1523/jneurosci.09-10-03631.1989.Peer-Reviewed Original ResearchConceptsARPP-21CAMP-dependent protein kinaseMolecular massMajor cytosolic substrateDopamine-innervated brain regionsAmino acid sequenceAmino acid sequencingProtein phosphorylationCytosolic substratesProtein kinaseAcid sequenceSeryl residuesHistidinyl residuesMolecular mechanismsBovine caudate nucleusPrimary structureNH2-terminalEdman degradationDopamine-innervated regionsPolypeptide chainAmino acid analysisCysteinyl residuesGas-phase sequencingPosition 55SDS-PAGESite-specific mutagenesis of T4 gene 32: the role of tyrosine residues in protein-nucleic acid interactions.
Shamoo Y, Ghosaini L, Keating K, Williams K, Sturtevant J, Konigsberg W. Site-specific mutagenesis of T4 gene 32: the role of tyrosine residues in protein-nucleic acid interactions. Biochemistry 1989, 28: 7409-17. PMID: 2684276, DOI: 10.1021/bi00444a039.Peer-Reviewed Original ResearchMeSH KeywordsCalorimetry, Differential ScanningCircular DichroismDNA-Binding ProteinsDNA, Single-StrandedDNA, ViralElectrophoresis, Polyacrylamide GelEscherichia coliGene Expression RegulationGenes, ViralMutationNucleic Acid DenaturationPoly dA-dTPoly TProtein DenaturationT-PhagesTemperatureThermodynamicsTrypsinTyrosineViral ProteinsZinc
1988
Phenylalanines that are conserved among several RNA-binding proteins form part of a nucleic acid-binding pocket in the A1 heterogeneous nuclear ribonucleoprotein.
Merrill B, Stone K, Cobianchi F, Wilson S, Williams K. Phenylalanines that are conserved among several RNA-binding proteins form part of a nucleic acid-binding pocket in the A1 heterogeneous nuclear ribonucleoprotein. Journal Of Biological Chemistry 1988, 263: 3307-3313. PMID: 2830282, DOI: 10.1016/s0021-9258(18)69073-8.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBinding SitesCarrier ProteinsCattleChromatography, AffinityChromatography, High Pressure LiquidDNA HelicasesDNA, Single-StrandedElectrophoresis, Polyacrylamide GelHeterogeneous Nuclear Ribonucleoprotein A1Heterogeneous-Nuclear Ribonucleoprotein Group A-BHeterogeneous-Nuclear RibonucleoproteinsMolecular Sequence DataNucleic AcidsPeptide FragmentsPhenylalaninePhenylthiohydantoinPhotochemistryPoly TRatsRibonucleoproteinsRNA-Binding ProteinsSerine EndopeptidasesThymus HormonesTrypsinConceptsRNA-binding proteinHeterogeneous nuclear ribonucleoproteinsA1 heterogeneous nuclear ribonucleoproteinNuclear ribonucleoproteinRepeat sequencesPhenylalanine residuesRNA-binding pocketDNA-cellulose chromatographyInternal repeat sequencesStaphylococcus aureus VSequence homologyCovalent adduct formationA1 proteinPrimary structurePartial proteolysisAnalogous positionsAmino acidsTryptic peptidesProteinPolypeptideProteolytic fragmentsRibonucleoproteinFirst experimental evidenceResiduesCellulose chromatography
1986
Gene 32 protein, the single-stranded DNA binding protein from bacteriophage T4, is a zinc metalloprotein.
Giedroc D, Keating K, Williams K, Konigsberg W, Coleman J. Gene 32 protein, the single-stranded DNA binding protein from bacteriophage T4, is a zinc metalloprotein. Proceedings Of The National Academy Of Sciences Of The United States Of America 1986, 83: 8452-8456. PMID: 3490667, PMCID: PMC386948, DOI: 10.1073/pnas.83.22.8452.Peer-Reviewed Original ResearchConceptsGene 32 proteinApo-g32PT4-infected Escherichia coliBacteriophage T4-infected Escherichia coliTyrosine-rich sequenceP-hydroxymercuriphenylsulfonatePlasmid pKC30Sequence CysBacteriophage T4Limited proteolysisConformational elementsEscherichia coliProteinDNAEDTA resultsG32PCysteineFragment ASide chainsPKC30ComplexesProteolysisColiSequenceLinear incorporationPurification and domain structure of core hnRNP proteins A1 and A2 and their relationship to single-stranded DNA-binding proteins.
Kumar A, Williams K, Szer W. Purification and domain structure of core hnRNP proteins A1 and A2 and their relationship to single-stranded DNA-binding proteins. Journal Of Biological Chemistry 1986, 261: 11266-11273. PMID: 3733753, DOI: 10.1016/s0021-9258(18)67378-8.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceChromatography, High Pressure LiquidCircular DichroismDNA-Binding ProteinsHeLa CellsHeterogeneous Nuclear Ribonucleoprotein A1Heterogeneous-Nuclear Ribonucleoprotein Group A-BHeterogeneous-Nuclear RibonucleoproteinsHumansMolecular WeightRibonucleoproteinsSpectrophotometry, UltravioletTrypsinConceptsHeterogeneous nuclear ribonucleoproteinsNucleic acid-binding domainProtein A1Glycine-rich proteinSsDNA-binding proteinDNA-binding proteinsHnRNP protein A1Helix-destabilizing activityHnRNP proteinsNuclear ribonucleoproteinTerminal domainHDP-1A1 bindsGlycine residueNative proteinPrimary structureLimited proteolysisHeLa cellsProtein A2Amino acidsProteinHigh pressure liquid chromatography purification of UP1 and UP2, two related single-stranded nucleic acid-binding proteins from calf thymus.
Merrill B, LoPresti M, Stone K, Williams K. High pressure liquid chromatography purification of UP1 and UP2, two related single-stranded nucleic acid-binding proteins from calf thymus. Journal Of Biological Chemistry 1986, 261: 878-883. PMID: 3941105, DOI: 10.1016/s0021-9258(17)36178-1.Peer-Reviewed Original Research
1985
Identification of a nucleic acid helix-destabilizing protein from rat liver as lactate dehydrogenase-5.
Williams K, Reddigari S, Patel G. Identification of a nucleic acid helix-destabilizing protein from rat liver as lactate dehydrogenase-5. Proceedings Of The National Academy Of Sciences Of The United States Of America 1985, 82: 5260-5264. PMID: 2991914, PMCID: PMC390547, DOI: 10.1073/pnas.82.16.5260.Peer-Reviewed Original ResearchConceptsHelix-destabilizing proteinSs-DNAAmino acid compositionHPLC tryptic peptide mapsNucleic acid helix-destabilizing proteinSolid-phase protein sequencingChemical modification studiesCoenzyme binding siteTyrosine-238Molecular weightSimilar amino acid compositionsTryptic peptide mapsAcid compositionLactate dehydrogenase 5Molecular homogeneitySimilar specific activitiesProtein sequencingLDH proteinDNA bindingAmino terminusBiological roleSingle proteinM chainTryptic peptidesVivo role
1982
Crystallization of a tryptic core of the single-stranded DNA binding protein of bacteriophage T4
McKay D, Williams K. Crystallization of a tryptic core of the single-stranded DNA binding protein of bacteriophage T4. Journal Of Molecular Biology 1982, 160: 659-661. PMID: 7175942, DOI: 10.1016/0022-2836(82)90321-7.Peer-Reviewed Original Research
1981
Primary structure of the bacteriophage T4 DNA helix-destabilizing protein.
Williams K, LoPresti M, Setoguchi M. Primary structure of the bacteriophage T4 DNA helix-destabilizing protein. Journal Of Biological Chemistry 1981, 256: 1754-1762. PMID: 6257686, DOI: 10.1016/s0021-9258(19)69872-8.Peer-Reviewed Original ResearchConceptsGene 32 proteinT4 DNA replication proteinsPrimary structureDNA replication proteinsDNA-binding proteinsHelix-destabilizing proteinLimited trypsin digestionGene 32Replication proteinsUnusual stretchesSerine residuesCyanogen bromide cleavageBacteriophage T4DNA bindingSequencing of peptidesAlpha-helixTyrosine residuesBeta sheetNative proteinStaphylococcal proteaseCooperative bindingAmino acidsTryptic peptidesPosition 72Protein
1979
T4 gene 32 protein trypsin-generated fragments. Fluorescence measurement of DNA-binding parameters.
Spicer E, Williams K, Konigsberg W. T4 gene 32 protein trypsin-generated fragments. Fluorescence measurement of DNA-binding parameters. Journal Of Biological Chemistry 1979, 254: 6433-6436. PMID: 221499, DOI: 10.1016/s0021-9258(18)50385-9.Peer-Reviewed Original ResearchStructural characteristics of interferons from mouse Ehrlich ascites tumor cells.
Cabrer B, Taira H, Broeze R, Kempe T, Williams K, Slattery E, Konigsberg W, Lengyel P. Structural characteristics of interferons from mouse Ehrlich ascites tumor cells. Journal Of Biological Chemistry 1979, 254: 3681-3684. PMID: 438151, DOI: 10.1016/s0021-9258(18)50635-9.Peer-Reviewed Original ResearchConceptsAmino acidsMouse EhrlichNH2-terminal amino acidsTryptic peptide mapsSmaller speciesLarger speciesPeptide mapsSpeciesTumor cellsSize classesNewcastle disease virusDisease virusSpecific activityCellsGlycosylationProteinUnits/AcidEhrlichCarboxypeptidaseInterferonIsolationStructural characteristics