2024
Mitofusin 2 plays a critical role in maintaining the functional integrity of the neuromuscular-skeletal axis
Zhu M, Zeiss C, Hamrick M, Weinstein R, Sun B, Brotto M, Liu X, Siu E, Huttner A, Tommasini S, Simpson C, Insogna K. Mitofusin 2 plays a critical role in maintaining the functional integrity of the neuromuscular-skeletal axis. Bone 2024, 184: 117086. PMID: 38552893, DOI: 10.1016/j.bone.2024.117086.Peer-Reviewed Original ResearchConceptsDeletion of Mfn2Bone mineral densityMitofusin 2Reduced expression of Mfn2Myofiber atrophySpinal cordTransgenic mice expressing CreMice expressing CreNon-redundant roleSkeletal muscle histologyLumbar spinal cordTrabecular bone massLean body massExpression of Mfn2Mitochondrial reticulumMFN2 geneDisruption of cellular architectureImpaired osteoblast differentiationOsteoblast lineage commitmentMfn2Mitochondrial sizeMitofusinMineral densityCo-expressionDisorganized sarcomeres
2021
An Unanticipated Role for Sphingosine Kinase-2 in Bone and in the Anabolic Effect of Parathyroid Hormone
Walker JM, Yao GQ, Siu E, Zhu M, Sun BH, Simpson C, Insogna KL. An Unanticipated Role for Sphingosine Kinase-2 in Bone and in the Anabolic Effect of Parathyroid Hormone. Endocrinology 2021, 162: bqab042. PMID: 33640975, PMCID: PMC8095390, DOI: 10.1210/endocr/bqab042.Peer-Reviewed Original ResearchConceptsSphk2-/- miceParathyroid hormoneAnabolic responseFemoral trabecular BV/TVLower spinal bone mineral densityTrabecular BV/TVSpinal bone mineral densityDaily parathyroid hormoneFemoral bone volumeSuppression of sclerostinEnd of treatmentNormal bone massBone mineral densityNormal bone remodelingRole of SphK1BV/TVFemale control animalsSphingosine kinase 2Sphingosine kinaseControl miceLow BMDAnabolic effectsBone massMineral densityControl animalsSelective deletion of the receptor for CSF1, c-fms, in osteoclasts results in a high bone mass phenotype, smaller osteoclasts in vivo and an impaired response to an anabolic PTH regimen
Zhu M, Sun BH, Nevius E, Kaplan J, Pereira J, Insogna K. Selective deletion of the receptor for CSF1, c-fms, in osteoclasts results in a high bone mass phenotype, smaller osteoclasts in vivo and an impaired response to an anabolic PTH regimen. PLOS ONE 2021, 16: e0247199. PMID: 33607650, PMCID: PMC7895546, DOI: 10.1371/journal.pone.0247199.Peer-Reviewed Original ResearchConceptsColony stimulating factor 1Mature osteoclastsBone massHigh bone mass phenotypeAttenuated anabolic responseDaily subcutaneous dosesTrabecular bone massBone mass phenotypeC-fmsNormal tooth eruptionTrabecular bone compartmentsMature osteoclast functionCathepsin K promoterFemurs of maleWild-type animalsOcS/BSFemale knockSubcutaneous dosesNormal weightSmall osteoclastsImpaired responseTrabecular numberAnabolic responseFlox miceMass phenotype
2020
Identification of a 22 bp DNA cis Element that Plays a Critical Role in Colony Stimulating Factor 1-Dependent Transcriptional Activation of the SPHK1 Gene
Yao GQ, Zhu M, Walker J, Insogna K. Identification of a 22 bp DNA cis Element that Plays a Critical Role in Colony Stimulating Factor 1-Dependent Transcriptional Activation of the SPHK1 Gene. Calcified Tissue International 2020, 107: 52-59. PMID: 32246175, PMCID: PMC7274855, DOI: 10.1007/s00223-020-00685-4.Peer-Reviewed Original ResearchConceptsColony stimulating factor 1Sphingosine kinase 1Bp fragmentSPHK1 promoterBp sequenceSphK1 geneDNA cis elementsProtein binding regionsSPHK1 gene expressionBp DNA fragmentStimulating factor 1Dual-luciferase reporterPutative DNATranscriptional activationTranscription factorsNuclear proteinsDNA sequencesCis elementsDNA bindingGene expressionPromoter activityDNA fragmentsKinase 1EMSAsProtein binding
2018
The contribution of cross-talk between the cell-surface proteins CD36 and CD47–TSP-1 in osteoclast formation and function
Koduru SV, Sun BH, Walker JM, Zhu M, Simpson C, Dhodapkar M, Insogna KL. The contribution of cross-talk between the cell-surface proteins CD36 and CD47–TSP-1 in osteoclast formation and function. Journal Of Biological Chemistry 2018, 293: 15055-15069. PMID: 30082316, PMCID: PMC6166722, DOI: 10.1074/jbc.ra117.000633.Peer-Reviewed Original ResearchConceptsOsteoclast formationTSP-1Competitive NO synthase inhibitorPro-osteoclastogenic effectAntibody-mediated blockadeNitroarginine methyl esterNO synthase inhibitorNitric Oxide SignalingPTH infusionDifferentiation 47Parathyroid hormoneBone resorptionFemale miceHypercalcemic responseOsteoclast maturationSynthase inhibitorResorptive activitySynthetic agonistsCD36Osteoclast progenitorsMiceInhibitory effectCD47OsteoclastsWT osteoblasts
2017
Breast cancer-associated gene 3 interacts with Rac1 and augments NF-κB signaling in vitro, but has no effect on RANKL-induced bone resorption in vivo
Yao C, Yu KP, Philbrick W, Sun BH, Simpson C, Zhang C, Insogna K. Breast cancer-associated gene 3 interacts with Rac1 and augments NF-κB signaling in vitro, but has no effect on RANKL-induced bone resorption in vivo. International Journal Of Molecular Medicine 2017, 40: 1067-1077. PMID: 28791343, PMCID: PMC5593463, DOI: 10.3892/ijmm.2017.3091.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAnimalsBone ResorptionCathepsin KCell LineFemaleFemurFibroblastsGene Expression RegulationHEK293 CellsHeLa CellsHumansMaleMiceMice, Inbred C57BLMice, TransgenicNeuropeptidesNF-kappa BOrgan SpecificityOsteoclastsPromoter Regions, GeneticRac1 GTP-Binding ProteinRANK LigandSignal TransductionTibiaConceptsNF-κB signalingCell type-dependent roleCritical downstream targetNF-κBCanonical NF-κB signalingNuclear factorReceptor activatorNuclear Rac1Adaptor proteinCancer-associated genesMature osteoclast formationSmall GTPaseDownstream targetsExogenous receptor activatorLow-dose RANKLNF-κB interactionTransgenic animalsImportant regulatorBreast cancer-associated genesWild-type littermatesCell typesRac1SignalingBCA3Dependent role
2016
The liver throws the skeleton a bone (resorption factor)
Chung C, Insogna KL. The liver throws the skeleton a bone (resorption factor). Hepatology 2016, 64: 977-979. PMID: 27312397, PMCID: PMC4992574, DOI: 10.1002/hep.28688.Peer-Reviewed Original Research
2015
Deletion of Rac in Mature Osteoclasts Causes Osteopetrosis, an Age‐Dependent Change in Osteoclast Number, and a Reduced Number of Osteoblasts In Vivo
Zhu M, Sun B, Saar K, Simpson C, Troiano N, Dallas SL, Tiede‐Lewis L, Nevius E, Pereira JP, Weinstein RS, Tommasini SM, Insogna KL. Deletion of Rac in Mature Osteoclasts Causes Osteopetrosis, an Age‐Dependent Change in Osteoclast Number, and a Reduced Number of Osteoblasts In Vivo. Journal Of Bone And Mineral Research 2015, 31: 864-873. PMID: 26496249, PMCID: PMC4826801, DOI: 10.1002/jbmr.2733.Peer-Reviewed Original ResearchConceptsDual-energy X-ray absorptiometryBone mineral densityDKO miceParathyroid hormoneOsteoclast numberDKO animalsSerum cross-linked C-telopeptideCross-linked C-telopeptideDaily parathyroid hormoneTrabecular bone massX-ray absorptiometryMetaphyseal trabecular boneNormal differentiation markersAge-dependent changesC-telopeptideMineral densityBone massBone densityActin ring formationSkeletal metabolismOsteoblast numberTooth eruptionResorptive activityNormal responseFocal disruptionAgRP Neurons Regulate Bone Mass
Kim JG, Sun BH, Dietrich MO, Koch M, Yao GQ, Diano S, Insogna K, Horvath TL. AgRP Neurons Regulate Bone Mass. Cell Reports 2015, 13: 8-14. PMID: 26411686, PMCID: PMC5868421, DOI: 10.1016/j.celrep.2015.08.070.Peer-Reviewed Original ResearchMeSH KeywordsAgouti-Related ProteinAnimalsArcuate Nucleus of HypothalamusBone DensityBone Diseases, MetabolicFemurGene Expression RegulationHomeostasisHypothalamusIon ChannelsLeptinMaleMiceMice, KnockoutMitochondrial ProteinsNeuronsNorepinephrinePhenotypePropranololReceptors, Adrenergic, betaReceptors, LeptinSignal TransductionSirtuin 1TibiaUncoupling Protein 2ConceptsAgRP neuronsCell-autonomous deletionSignificant regulatory roleAgRP neuronal functionBone massLeptin receptor deletionSkeletal bone metabolismTransgenic animalsRegulatory roleGene deletionBone homeostasisDeletionNeuronal functionPostnatal deletionSympathetic toneReceptor deletionArcuate nucleusLeptin actionBone metabolismSkeletal metabolismMultiple linesNeuronsMiceMetabolismCircuit integrityPhosphoenolpyruvate Is a Metabolic Checkpoint of Anti-tumor T Cell Responses
Ho PC, Bihuniak JD, Macintyre AN, Staron M, Liu X, Amezquita R, Tsui YC, Cui G, Micevic G, Perales JC, Kleinstein SH, Abel ED, Insogna KL, Feske S, Locasale JW, Bosenberg MW, Rathmell JC, Kaech SM. Phosphoenolpyruvate Is a Metabolic Checkpoint of Anti-tumor T Cell Responses. Cell 2015, 162: 1217-1228. PMID: 26321681, PMCID: PMC4567953, DOI: 10.1016/j.cell.2015.08.012.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCalciumCD4-Positive T-LymphocytesEndoplasmic ReticulumGlycolysisHexokinaseImmunotherapyLymphocytes, Tumor-InfiltratingMelanomaMiceMonitoring, ImmunologicNFATC Transcription FactorsPhosphoenolpyruvateReceptors, Antigen, T-CellSarcoplasmic Reticulum Calcium-Transporting ATPasesSignal TransductionTransforming Growth Factor betaTumor MicroenvironmentConceptsAnti-tumor T cell responsesT cell responsesT cellsEffector functionsCell responsesTumor-reactive T cellsTumor-infiltrating T cellsPhosphoenolpyruvate carboxykinase 1Tumoricidal effector functionsTumor-specific CD4CD8 T cellsT cell activityMelanoma-bearing miceAerobic glycolysisActivated T cellsMetabolic checkpointTumor growthCell activityTumor microenvironmentNFAT SignalingMetabolic reprogrammingCarboxykinase 1Anabolic metabolismCellsATPase activity
2014
The Transcription Factor T-box 3 Regulates Colony-stimulating Factor 1-dependent Jun Dimerization Protein 2 Expression and Plays an Important Role in Osteoclastogenesis*
Yao C, Yao GQ, Sun BH, Zhang C, Tommasini SM, Insogna K. The Transcription Factor T-box 3 Regulates Colony-stimulating Factor 1-dependent Jun Dimerization Protein 2 Expression and Plays an Important Role in Osteoclastogenesis*. Journal Of Biological Chemistry 2014, 289: 6775-6790. PMID: 24394418, PMCID: PMC3945339, DOI: 10.1074/jbc.m113.499210.Peer-Reviewed Original Research
2012
LIM kinase 1 deficient mice have reduced bone mass
Kawano T, Zhu M, Troiano N, Horowitz M, Bian J, Gundberg C, Kolodziejczak K, Insogna K. LIM kinase 1 deficient mice have reduced bone mass. Bone 2012, 52: 70-82. PMID: 23017662, PMCID: PMC3688839, DOI: 10.1016/j.bone.2012.09.024.Peer-Reviewed Original ResearchConceptsLIM kinase 1Cytoskeletal remodelingRole of LIMK1Specialized cellular functionsActin cytoskeletal remodelingActin-severing proteinBone cell biologyNormal osteoblast differentiationCellular functionsCell biologyCell motilityCell shapeKinase 1Cell cycleF-actinOsteoblast differentiationPhospho-cofilinActin monomersSkeletal phenotypeOsteoblast coloniesOsteoblastsMetalloproteinase activityDifferentiationRemodelingRate of mineralization
2011
Selective deletion of the membrane-bound colony stimulating factor 1 isoform leads to high bone mass but does not protect against estrogen-deficiency bone loss
Yao GQ, Wu JJ, Troiano N, Zhu ML, Xiao XY, Insogna K. Selective deletion of the membrane-bound colony stimulating factor 1 isoform leads to high bone mass but does not protect against estrogen-deficiency bone loss. Journal Of Bone And Mineral Metabolism 2011, 30: 408-418. PMID: 22105655, PMCID: PMC4378684, DOI: 10.1007/s00774-011-0336-y.Peer-Reviewed Original ResearchAnimalsBone and BonesBone DensityCell DifferentiationCells, CulturedCoculture TechniquesColony-Stimulating FactorsFemaleHumansHypertriglyceridemiaMaleMiceMice, KnockoutOsteoblastsOsteoclastsOsteoporosisOsteoporosis, PostmenopausalProtein IsoformsRNA, MessengerSex CharacteristicsSolubilityUp-RegulationControl of bone formation by the serpentine receptor Frizzled-9
Albers J, Schulze J, Beil FT, Gebauer M, Baranowsky A, Keller J, Marshall RP, Wintges K, Friedrich FW, Priemel M, Schilling AF, Rueger JM, Cornils K, Fehse B, Streichert T, Sauter G, Jakob F, Insogna KL, Pober B, Knobeloch KP, Francke U, Amling M, Schinke T. Control of bone formation by the serpentine receptor Frizzled-9. Journal Of Cell Biology 2011, 192: 1057-1072. PMID: 21402791, PMCID: PMC3063134, DOI: 10.1083/jcb.201008012.Peer-Reviewed Original ResearchConceptsBone formationLow bone massBone loss disordersPotential downstream mediatorsBone massUbiquitin-like modifier ISG15Interferon-regulated genesTherapeutic implicationsLoss disordersCanonical Wnt signalingBone remodelingFrizzled 9Reduced expressionDownstream mediatorDifferentiation markersWnt signalingWnt receptorsNormal expressionPrimary osteoblastsFZD9OsteoblastsOsteoblast differentiationMatrix mineralizationMolecular analysisChemokines
2010
Osteoclasts Lacking Rac2 Have Defective Chemotaxis and Resorptive Activity
Itokowa T, Zhu ML, Troiano N, Bian J, Kawano T, Insogna K. Osteoclasts Lacking Rac2 Have Defective Chemotaxis and Resorptive Activity. Calcified Tissue International 2010, 88: 75-86. PMID: 21110188, PMCID: PMC3155765, DOI: 10.1007/s00223-010-9435-3.Peer-Reviewed Original ResearchConceptsTrabecular bone massBone massMature osteoclastsFemoral cortical thicknessTotal bone areaNumber of osteoclastsWild-type miceNormal tooth eruptionNumber of osteoblastsWild-type animalsBone resorptionCortical porosityActin ring formationCortical thicknessTooth eruptionOsteoclast functionResorptive activityDefective chemotaxisBone areaFemale animalsMiceOsteoclastsMigratory rateNormal sizeSignificant differencesTargeted overexpression of Dkk1 in osteoblasts reduces bone mass but does not impair the anabolic response to intermittent PTH treatment in mice
Yao GQ, Wu JJ, Troiano N, Insogna K. Targeted overexpression of Dkk1 in osteoblasts reduces bone mass but does not impair the anabolic response to intermittent PTH treatment in mice. Journal Of Bone And Mineral Metabolism 2010, 29: 141-148. PMID: 20602130, PMCID: PMC3457021, DOI: 10.1007/s00774-010-0202-3.Peer-Reviewed Original ResearchConceptsParathyroid hormonePTH treatmentBone massTg miceAnabolic responseDKK1 expressionSingle daily subcutaneous doseDaily subcutaneous doseBone formationIntermittent PTH treatmentPotent anabolic agentOverexpression of DKK1Number of osteoblastsSubcutaneous doseWT miceReal-time PCRSkeletal sitesDickkopf-1Anabolic agentsBody weightTransgenic miceHistomorphometric parametersHistomorphometric analysisTargeted overexpressionPrimary murine osteoblasts
2009
Survey of the Enthesopathy of X-Linked Hypophosphatemia and Its Characterization in Hyp Mice
Liang G, Katz LD, Insogna KL, Carpenter TO, Macica CM. Survey of the Enthesopathy of X-Linked Hypophosphatemia and Its Characterization in Hyp Mice. Calcified Tissue International 2009, 85: 235-246. PMID: 19609735, PMCID: PMC2988401, DOI: 10.1007/s00223-009-9270-6.Peer-Reviewed Original ResearchMeSH KeywordsAchilles TendonAdolescentAdultAgedAnimalsBiomarkersCalcinosisChildDisease Models, AnimalDisease ProgressionFamilial Hypophosphatemic RicketsFemaleFibroblast Growth Factor-23Fibroblast Growth FactorsGenetic Diseases, X-LinkedHumansMiceMice, Inbred C57BLMiddle AgedPatellar LigamentPhenotypeQuadriceps MuscleRadiographyRheumatic DiseasesTendinopathyTendonsYoung AdultConceptsFGF-23Fibroblast growth factor receptor 3Hyp miceMajority of patientsHigh circulating levelsPhosphate-regulating hormoneBone spur formationTendon insertion siteGrowth factor receptor 3Insertion siteLigament insertion sitesCirculating LevelsPhosphate excretionBone-forming osteoblastsHeterotopic calcificationOsteophyte formationHistological examinationMurine modelReceptor 3Spur formationHypophosphatemiaEnthesis fibrocartilageBone mineralizationBiochemical milieuMiceTargeted overexpression of the two colony-stimulating factor-1 isoforms in osteoblasts differentially affects bone loss in ovariectomized mice
Yao GQ, Wu JJ, Ovadia S, Troiano N, Sun BH, Insogna K. Targeted overexpression of the two colony-stimulating factor-1 isoforms in osteoblasts differentially affects bone loss in ovariectomized mice. AJP Endocrinology And Metabolism 2009, 296: e714-e720. PMID: 19141689, PMCID: PMC2670621, DOI: 10.1152/ajpendo.90631.2008.Peer-Reviewed Original ResearchConceptsColony-stimulating factor-1Nonredundant functionsWild-type animalsTransgenic miceMembrane-bound isoformMCSF1Normal osteoclastogenesisCollagen promoterTransgenic expressionMajor isoformsIsoformsFactor 1Same genotypeOp phenotypeTargeted overexpressionOverexpressionOp miceOsteoblastsAnimalsPromoterMicePhenotypeFemale animalsAlphaIMale littermates
2008
Lrp5 Controls Bone Formation by Inhibiting Serotonin Synthesis in the Duodenum
Yadav VK, Ryu JH, Suda N, Tanaka KF, Gingrich JA, Schütz G, Glorieux FH, Chiang CY, Zajac JD, Insogna KL, Mann JJ, Hen R, Ducy P, Karsenty G. Lrp5 Controls Bone Formation by Inhibiting Serotonin Synthesis in the Duodenum. Cell 2008, 135: 825-837. PMID: 19041748, PMCID: PMC2614332, DOI: 10.1016/j.cell.2008.09.059.Peer-Reviewed Original ResearchConceptsBone massBone formationLrp5-deficient miceSerotonin blood levelsExpression of TPH1High bone massOsteoblast-specific disruptionRate-limiting biosynthetic enzymeBone lossEnterochromaffin cellsBlood levelsSerotonin synthesisPotential therapyBone remodelingWnt coreceptorSerotoninLRP5Function mutationsDuodenumTPH1Independent mannerOsteoporosisTherapyBiosynthetic enzymesMiceThe Anabolic Response to Parathyroid Hormone Is Augmented in Rac2 Knockout Mice
Kawano T, Troiano N, Adams DJ, Wu JJ, Sun BH, Insogna K. The Anabolic Response to Parathyroid Hormone Is Augmented in Rac2 Knockout Mice. Endocrinology 2008, 149: 4009-4015. PMID: 18467443, PMCID: PMC2488220, DOI: 10.1210/en.2008-0034.Peer-Reviewed Original ResearchConceptsAnabolic responseType 1 collagenWild-type animalsPTH treatmentKnockout miceResorptive activityAvailable anabolic therapyTotal bone densityAge-matched wild-type animalsSerum aminoterminal propeptideWild-type groupRac2 knockout miceGroups of animalsAnabolic therapyParathyroid hormoneResorptive responseSerum markersOsteoclast numberTherapeutic responseAminoterminal propeptideBone massBone densitySkeletal responseCortical thicknessGenetic absence