2023
Image Intensity Normalization Benefits Deep Learning Brain PET Motion Correction
Lieffrig E, Zhang J, Zeng T, Cai Z, You C, Lu Y, Onofrey J. Image Intensity Normalization Benefits Deep Learning Brain PET Motion Correction. 2023, 00: 1-1. DOI: 10.1109/nssmicrtsd49126.2023.10338194.Peer-Reviewed Original ResearchInput data normalizationImage intensity normalizationNeural network inputsMedical imaging researchPET motion correctionPre-processing stepMotion prediction errorMotion correctionIntensity normalizationNetwork inputsMotion predictionHead motion correctionInput dataTesting subjectsData normalizationEarly framesSuch methodsPrediction errorImaging researchDifferent normalization strategiesNormalization strategyMachineAlgorithmTaskValue analysis
2018
Deep Learning Retinal Vessel Segmentation from a Single Annotated Example: An Application of Cyclic Generative Adversarial Neural Networks
Sadda P, Onofrey J, Papademetris X. Deep Learning Retinal Vessel Segmentation from a Single Annotated Example: An Application of Cyclic Generative Adversarial Neural Networks. Lecture Notes In Computer Science 2018, 11043: 82-91. DOI: 10.1007/978-3-030-01364-6_10.Peer-Reviewed Original ResearchGenerative adversarial neural networksAdversarial neural networkGround truth segmentationNeural networkTruth segmentationMedical image segmentation tasksImage segmentation tasksConvolutional neural networkDeep learning methodsRetinal vessel segmentationConvolutional networkSegmentation taskTraining examplesAnnotated examplesTraining dataLearning methodsVessel segmentationSegmentationSynthetic examplesNetworkLarge amountDatasetTaskExampleAccuracy