Featured Publications
Cross-Attention for Improved Motion Correction in Brain PET
Cai Z, Zeng T, Lieffrig E, Zhang J, Chen F, Toyonaga T, You C, Xin J, Zheng N, Lu Y, Duncan J, Onofrey J. Cross-Attention for Improved Motion Correction in Brain PET. Lecture Notes In Computer Science 2023, 14312: 34-45. PMID: 38174216, PMCID: PMC10758996, DOI: 10.1007/978-3-031-44858-4_4.Peer-Reviewed Original ResearchDeep learning networkCross-attention mechanismDeep learning benchmarksMotion correctionTraining data domainPET list-mode dataPET image reconstructionQuality of reconstructionData domainCross attentionLearning networkSupervised mannerLearning benchmarksReference imageMotion trackingInherent informationList-mode dataImage reconstructionBrain PET dataPrediction resultsDifferent scannersHead motionImproved motion correctionNetworkSpatial correspondence
2023
Teacher’s PET: Semi-supervised Deep Learning for PET Head Motion Correction
Zeng T, You C, Cai Z, Lieffrig E, Zhang J, Chen F, Lu Y, Onofrey J. Teacher’s PET: Semi-supervised Deep Learning for PET Head Motion Correction. 2023, 00: 1-1. DOI: 10.1109/nssmicrtsd49126.2023.10337834.Peer-Reviewed Original ResearchMotion tracking methodHead motion correctionMotion trackingExtra hardwareMotion estimatesTracking methodSemi-supervised deep learningSupervised deep learning methodsQuality training dataDeep learning methodsMean teacher modelSemi-supervised mannerMotion correctionMotion detectionHead motionCorrection networkDeep learningInaccurate quantitative resultsTraining dataLearning methodsBetter generalizationMotionLow resolutionCorrection resultsPerformanceSpatial Normalization to Improve Deep Learning-based Head Motion Correction in PET
Zhang J, Lieffrig E, Zeng T, You C, Cai Z, Toyonaga T, Lu Y, Onofrey J. Spatial Normalization to Improve Deep Learning-based Head Motion Correction in PET. 2023, 00: 1-1. DOI: 10.1109/nssmicrtsd49126.2023.10338387.Peer-Reviewed Original ResearchMulti-Task Deep Learning and Uncertainty Estimation for Pet Head Motion Correction
Lieffrig E, Zeng T, Zhang J, Fontaine K, Fang X, Revilla E, Lu Y, Onofrey J. Multi-Task Deep Learning and Uncertainty Estimation for Pet Head Motion Correction. 2011 IEEE International Symposium On Biomedical Imaging: From Nano To Macro 2023, 00: 1-5. PMID: 38111738, PMCID: PMC10725741, DOI: 10.1109/isbi53787.2023.10230791.Peer-Reviewed Original ResearchMulti-task deep learningMulti-task architectureMonte Carlo dropoutTesting subjectsDeep learningMotion tracking deviceSupervised learningMotion correction methodNetwork predictionHead motion correctionAppearance predictionReconstructed imagesPrediction performanceImage acquisitionImage qualityTracking deviceMotion correctionLearning processUncertainty estimationTomography image acquisitionHead motionPrediction uncertaintyLearningQualitative resultsArchitecture
2022
Multi-tracer Deep Learning for PET Head Motion Correction
Lieffrig E, Zeng T, Zhang J, Fang X, Revilla E, Lu Y, Onofrey J. Multi-tracer Deep Learning for PET Head Motion Correction. 2022, 00: 1-4. DOI: 10.1109/nss/mic44845.2022.10399143.Peer-Reviewed Original ResearchCamera motion trackingHead motionMotion correction performanceHead motion correctionRigid head motionContinuous head motionTransform blockFeature-wiseSupervised learningDeep learningMotion correctionBrain positron emission tomographyMotion trackingTracking hardwareExternal devicesCorrect performanceImage qualityQuantification errorsPositron emission tomographyQualitative resultsCorrection resultsLearningTracer typeMotionHardwareAn objective evaluation method for head motion estimation in PET—Motion corrected centroid-of-distribution
Sun C, Revilla EM, Zhang J, Fontaine K, Toyonaga T, Gallezot JD, Mulnix T, Onofrey JA, Carson RE, Lu Y. An objective evaluation method for head motion estimation in PET—Motion corrected centroid-of-distribution. NeuroImage 2022, 264: 119678. PMID: 36261057, DOI: 10.1016/j.neuroimage.2022.119678.Peer-Reviewed Original ResearchConceptsMotion informationHardware-based methodsHead motion estimationPET image reconstructionMotion estimation methodData-driven methodPET raw dataHead motionMask segmentationFinal image qualityMotion estimationTracking hardwareDifferent motion estimation methodsBrain PET studiesGround truthImage reconstructionRaw dataNew algorithmObjective quality controlInaccurate motion informationImage qualityMotion correction algorithmAlgorithmMotion errorsCorrection algorithmSupervised Deep Learning for Head Motion Correction in PET
Zeng T, Zhang J, Revilla E, Lieffrig E, Fang X, Lu Y, Onofrey J. Supervised Deep Learning for Head Motion Correction in PET. Lecture Notes In Computer Science 2022, 13434: 194-203. PMID: 38107622, PMCID: PMC10725740, DOI: 10.1007/978-3-031-16440-8_19.Peer-Reviewed Original ResearchDeep learning-based algorithmMotion tracking informationHead motion correctionNovel deep learningLearning-based algorithmMotion correctionDeep learningRegression layerEncoder layersTracking hardwareNetwork performanceSupervised mannerTracking informationAblation studiesRegistration approachCloud representationBrain positron emission tomography (PET) imagingTransformation layerDesign choicesReconstructed imagesPrediction performanceExternal devicesImage analysisTransformation parametersHead motion