2023
PyTorch-FEA: Autograd-enabled finite element analysis methods with applications for biomechanical analysis of human aorta
Liang L, Liu M, Elefteriades J, Sun W. PyTorch-FEA: Autograd-enabled finite element analysis methods with applications for biomechanical analysis of human aorta. Computer Methods And Programs In Biomedicine 2023, 238: 107616. PMID: 37230048, PMCID: PMC10330852, DOI: 10.1016/j.cmpb.2023.107616.Peer-Reviewed Original ResearchConceptsDeep neural networksFinite element analysisFEA codeImproved loss functionInverse methodFinite element analysis methodInverse problemCommercial FEA software packageElement analysis methodFEA software packageCommercial FEA packageNew libraryNeural networkPerformance issuesFEA packageNew inverse methodBiomechanical analysisComputational timeFEA methodLoss functionSolid mechanicsDeformation analysisSoftware packageInverse analysisSeries of applications
2005
Mechanical deterioration underlies malignant behavior of aneurysmal human ascending aorta
Koullias G, Modak R, Tranquilli M, Korkolis DP, Barash P, Elefteriades JA. Mechanical deterioration underlies malignant behavior of aneurysmal human ascending aorta. Journal Of Thoracic And Cardiovascular Surgery 2005, 130: 677.e1-677.e9. PMID: 16153912, DOI: 10.1016/j.jtcvs.2005.02.052.Peer-Reviewed Original ResearchMeSH KeywordsAortaAortic AneurysmAortic RuptureBiomechanical PhenomenaBlood PressureEchocardiographyElasticityFemaleHumansMaleMiddle AgedStress, MechanicalConceptsMechanical characteristicsMechanical deteriorationHuman ascending aortaAortic aneurysmAortic wall stressNormal aortaAneurysmal aortaAortic distensibilityAscending aortaMalignant behaviorAortic wallWall stressMaximal tensile strengthMechanical propertiesCoronary artery bypassTensile strengthTime of surgeryAortic wall thicknessAscending Aortic AneurysmMalignant clinical behaviorElastic modulusHuman ascending aortic aneurysmsEngineering analysisAneurysmal aortic wallMechanical substrate