2014
Versatile microRNA biogenesis in animals and their viruses
Xie M, Steitz JA. Versatile microRNA biogenesis in animals and their viruses. RNA Biology 2014, 11: 673-681. PMID: 24823351, PMCID: PMC4156499, DOI: 10.4161/rna.28985.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsMicroRNAsRibonuclease IIIRNA CapsRNA PrecursorsRNA Processing, Post-TranscriptionalTranscription, GeneticVirusesConceptsEssential cellular processesMiRNA regulatory networkPost-transcriptional levelUbiquitous gene regulatorsNon-canonical pathwayMost miRNAsCytoplasmic DicerMicroRNA biogenesisMolecular machineryCellular processesRegulatory networksPrimary transcriptGene regulatorsNuclear DroshaCellular RNABiogenesisDroshaAlternative mechanismFundamental roleCleavage stepMetazoansDicerMiRNAsMicroRNAsMiRNA
2013
Phosphorylation of DGCR8 Increases Its Intracellular Stability and Induces a Progrowth miRNA Profile
Herbert KM, Pimienta G, DeGregorio SJ, Alexandrov A, Steitz JA. Phosphorylation of DGCR8 Increases Its Intracellular Stability and Induces a Progrowth miRNA Profile. Cell Reports 2013, 5: 1070-1081. PMID: 24239349, PMCID: PMC3892995, DOI: 10.1016/j.celrep.2013.10.017.Peer-Reviewed Original ResearchConceptsMicroprocessor complexRNA-binding proteinRNase III enzymeInhibition of phosphatasesStem-loop structureERK/MAPKSpecific processing activityMiRNA expression profilesExtracellular cuesMiRNA biogenesisDrosha proteinPhosphorylation sitesPrimary miRNAMammalian cellsProtein stabilityExpression profilesDGCR8Intracellular stabilityHeLa cellsCellular levelMiRNA profilesPhosphorylationMRNA levelsProteinCells
2009
Subnuclear compartmentalization of transiently expressed polyadenylated pri-microRNAs: Processing at transcription sites or accumulation in SC35 foci
Pawlicki JM, Steitz JA. Subnuclear compartmentalization of transiently expressed polyadenylated pri-microRNAs: Processing at transcription sites or accumulation in SC35 foci. Cell Cycle 2009, 8: 345-356. PMID: 19177009, PMCID: PMC3004524, DOI: 10.4161/cc.8.3.7494.Peer-Reviewed Original ResearchConceptsPri-miRNA processingPri-miRNAsTranscription sitesPrimary miRNA transcriptsPri-miRNA transcriptsPre-miRNA hairpinsRNA polymerase IIASF/SF2Splicing factor SC35Target messenger RNAsNumber of proteinsMiRNA biogenesisMiRNA transcriptsNuclear organizationMRNA metabolismPolymerase IINuclear fociProlyl isomeraseFactor SC35Subnuclear compartmentalizationPri-microRNAsMammalian cellsSC35 domainsGene expressionSC35
2008
Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production
Pawlicki JM, Steitz JA. Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production. Journal Of Cell Biology 2008, 182: 61-76. PMID: 18625843, PMCID: PMC2447899, DOI: 10.1083/jcb.200803111.Peer-Reviewed Original ResearchMeSH KeywordsChromatinExonsHeLa CellsHumansIntronsMicroRNAsMRNA Cleavage and Polyadenylation FactorsNuclear ProteinsPolyadenylationRegulatory Sequences, Nucleic AcidRibonucleoproteinsRNA Polymerase IIIRNA Processing, Post-TranscriptionalRNA TransportRNA, MessengerRNA, ViralSequence DeletionSerine-Arginine Splicing FactorsSubcellular FractionsTranscription, GeneticConceptsPri-miRNAsTranscription sitesEndogenous pri-miRNAsPrimary miRNA transcriptsPri-miRNA processingSplicing factor SC35Viral RNA elementsHigh nuclear levelsMiRNA biogenesisMiRNA transcriptionMiRNA transcriptsNuclear stepsPrecursor miRNAsNuclear fociFactor SC35MicroRNA productionRNA elementsGene expressionTranscription leadNuclear fractionNuclear levelsTranscriptionMiRNAsProcessing signalsBiogenesis
2004
Guide RNAs with 5′ Caps and Novel Box C/D snoRNA-like Domains for Modification of snRNAs in Metazoa
Tycowski KT, Aab A, Steitz JA. Guide RNAs with 5′ Caps and Novel Box C/D snoRNA-like Domains for Modification of snRNAs in Metazoa. Current Biology 2004, 14: 1985-1995. PMID: 15556860, DOI: 10.1016/j.cub.2004.11.003.Peer-Reviewed Original ResearchConceptsModification guide RNAsGuide RNABox C/D snoRNAsInvariant G residueKink-turn structureGuide RNA genesShort guide RNASmall ribonucleoprotein particlesMetazoan organismsAncestral metazoanGuanosine capMetazoan cellsSingle intronD snoRNAsRNA genesSpliceosomal snRNAsTelomerase RNARibosomal RNASuch RNAsRibonucleoprotein particleMetazoansUpstream promoterIntronsG residuesCommon modification
2001
Position within the host intron is critical for efficient processing of box C/D snoRNAs in mammalian cells
Hirose T, Steitz J. Position within the host intron is critical for efficient processing of box C/D snoRNAs in mammalian cells. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 12914-12919. PMID: 11606788, PMCID: PMC60799, DOI: 10.1073/pnas.231490998.Peer-Reviewed Original ResearchAnimalsBase SequenceCell LineHumansIntronsRNA Processing, Post-TranscriptionalRNA SplicingRNA, Small NucleolarSequence Homology, Nucleic AcidInternal Modification of U2 Small Nuclear (Snrna) Occurs in Nucleoli of Xenopus Oocytes
Yu Y, Shu M, Narayanan A, Terns R, Terns M, Steitz J. Internal Modification of U2 Small Nuclear (Snrna) Occurs in Nucleoli of Xenopus Oocytes. Journal Of Cell Biology 2001, 152: 1279-1288. PMID: 11257127, PMCID: PMC2199211, DOI: 10.1083/jcb.152.6.1279.Peer-Reviewed Original ResearchConceptsNucleolar localizationCajal bodiesU2 RNAInternal modificationSmall nuclearSm binding siteNucleolar localization signalSmall nucleolar RNAsXenopus oocytesCytoplasm of oocytesU2 small nuclearGuanosine capLocalization signalNucleolar RNAsRNAs showSubcellular sitesIntranuclear localizationIsolated nucleiRNABinding sitesNucleoliOocytesNucleotidesCytoplasmU2Non-coding snoRNA host genes in Drosophila: expression strategies for modification guide snoRNAs
Tycowski K, Steitz J. Non-coding snoRNA host genes in Drosophila: expression strategies for modification guide snoRNAs. European Journal Of Cell Biology 2001, 80: 119-125. PMID: 11302516, DOI: 10.1078/0171-9335-00150.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsDrosophila melanogasterGene ExpressionGenes, InsectHumansMultigene FamilyRNA Processing, Post-TranscriptionalRNA, Small NuclearVertebratesConceptsSnoRNA host genesModification-guide snoRNAsHost genesGuide snoRNAsSplice siteDifferent eukaryotic kingdomsEukaryotic kingdomsPolycistronic unitsD. melanogasterProtein codingTranslational apparatusConserved distanceSnoRNA sequencesTrailer sequencesIntron lariatPrimary transcriptFunctional proteinsNucleotides upstreamExpression strategyExonucleolytic activitySnoRNAsIntronsGenesDebranching activityProtein
1998
AUUUA Sequences Direct mRNA Deadenylation Uncoupled from Decay during Xenopus Early Development
Voeltz G, Steitz J. AUUUA Sequences Direct mRNA Deadenylation Uncoupled from Decay during Xenopus Early Development. Molecular And Cellular Biology 1998, 18: 7537-7545. PMID: 9819439, PMCID: PMC109334, DOI: 10.1128/mcb.18.12.7537.Peer-Reviewed Original ResearchMeSH Keywords3' Untranslated RegionsAnimalsConserved SequenceFertilizationGranulocyte-Macrophage Colony-Stimulating FactorMicroinjectionsOligodeoxyribonucleotidesOocytesPoly ARNA Processing, Post-TranscriptionalRNA, MessengerXenopusConceptsAU-rich elementsXenopus early developmentGranulocyte-macrophage colony-stimulating factor (GM-CSF) geneUntranslated region sequencesHuman granulocyte-macrophage colony-stimulating factor geneChimeric mRNAMid-blastula transitionEarly developmentColony-stimulating factor geneRNA deadenylationMRNA decayRapid deadenylationMRNA deadenylationDeadenylation activityDeadenylationFactor genesRegion sequencesEgg activationAUUUAC-MycMature eggsXenopus oocytesMRNAOocytesXenopusModifications of U2 snRNA are required for snRNP assembly and pre‐mRNA splicing
Yu Y, Shu M, Steitz J. Modifications of U2 snRNA are required for snRNP assembly and pre‐mRNA splicing. The EMBO Journal 1998, 17: 5783-5795. PMID: 9755178, PMCID: PMC1170906, DOI: 10.1093/emboj/17.19.5783.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceGuanosineMolecular Sequence DataOocytesPseudouridineRibonucleoproteins, Small NuclearRNA CapsRNA Processing, Post-TranscriptionalRNA SplicingRNA, Small NuclearSpliceosomesXenopusConceptsEnd of U2Native gel analysisPre-mRNA splicingU2 snRNP particleGlycerol gradient analysisPseudouridylation activityGuanosine capSnRNP assemblySpliceosomal snRNAsSplicing activityTMG capSpliceosome assemblyU2 RNAU2 snRNAU2 functionProtein profilesGel analysisSnRNP particlesXenopus oocytesInternal modificationSnRNASplicingPotent inhibitorU2Extensive modification
1995
ENHANCED PERSPECTIVE: Small RNA Chaperones for Ribosome Biogenesis
Steitz J, Tycowski K. ENHANCED PERSPECTIVE: Small RNA Chaperones for Ribosome Biogenesis. Science 1995, 270: 1626-1626. PMID: 7502072, DOI: 10.1126/science.270.5242.1626.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase CompositionCell NucleolusIntronsNucleic Acid ConformationRibonucleoproteins, Small NuclearRibosomesRNA PrecursorsRNA Processing, Post-TranscriptionalRNA, RibosomalRNA, Small NuclearDecreasing the distance between the two conserved sequence elements of histone pre-messenger RNA interferes with 3' processing in vitro.
Cho DC, Scharl EC, Steitz JA. Decreasing the distance between the two conserved sequence elements of histone pre-messenger RNA interferes with 3' processing in vitro. RNA 1995, 1: 905-14. PMID: 8548655, PMCID: PMC1369339.Peer-Reviewed Original ResearchAnimalsBase SequenceBinding SitesConserved SequenceHistonesMolecular Sequence DataMRNA Cleavage and Polyadenylation FactorsNuclear ProteinsNucleic Acid ConformationRibonucleoproteins, Small NuclearRNA PrecursorsRNA Processing, Post-TranscriptionalRNA, MessengerRNA-Binding ProteinsSequence DeletionSubstrate SpecificityTranscription, Genetic
1994
Requirement for Intron-Encoded U22 Small Nucleolar RNA in 18S Ribosomal RNA Maturation
Tycowski K, Shu M, Steitz J. Requirement for Intron-Encoded U22 Small Nucleolar RNA in 18S Ribosomal RNA Maturation. Science 1994, 266: 1558-1561. PMID: 7985025, DOI: 10.1126/science.7985025.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceBlotting, NorthernCell NucleolusHumansIntronsMolecular Sequence DataOligonucleotide ProbesOocytesRNA PrecursorsRNA Processing, Post-TranscriptionalRNA, NuclearRNA, Ribosomal, 18SRNA, Small NuclearXenopusConceptsRibosomal RNASmall RNAsProtein-coding gene transcriptsRibosomal RNA maturationSmall nucleolar RNAsRNA maturationVertebrate cellsCellular functionsNucleolar RNAsHost genesIntron fragmentGene transcriptsRNAXenopus oocytesU22IntronsGenesTranscriptsNucleoliOocytesMaturationTargetingCellsFragmentsDepletionSequence and structural elements critical for U8 snRNP function in Xenopus oocytes are evolutionarily conserved.
Peculis BA, Steitz JA. Sequence and structural elements critical for U8 snRNP function in Xenopus oocytes are evolutionarily conserved. Genes & Development 1994, 8: 2241-2255. PMID: 7958892, DOI: 10.1101/gad.8.18.2241.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceBiological EvolutionChromosomal Proteins, Non-HistoneConserved SequenceFemaleMethylationMolecular Sequence DataMutagenesis, Site-DirectedMutationNucleic Acid ConformationOocytesRibonucleoproteins, Small NuclearRNA CapsRNA PrecursorsRNA Processing, Post-TranscriptionalRNA, Small NuclearXenopusThe site of 3′ end formation of histone messenger RNA is a fixed distance from the downstream element recognized by the U7 snRNP.
Scharl EC, Steitz JA. The site of 3′ end formation of histone messenger RNA is a fixed distance from the downstream element recognized by the U7 snRNP. The EMBO Journal 1994, 13: 2432-2440. PMID: 8194533, PMCID: PMC395109, DOI: 10.1002/j.1460-2075.1994.tb06528.x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceCell NucleusCell-Free SystemCross-Linking ReagentsFurocoumarinsGuanosineHeLa CellsHistonesHumansMiceMolecular Sequence DataNucleic Acid ConformationProtein BindingRegulatory Sequences, Nucleic AcidRibonuclease HRibonucleoproteins, Small NuclearRNA Processing, Post-TranscriptionalRNA, MessengerStructure-Activity RelationshipSubstrate SpecificityConceptsHistone downstream elementU7 small nuclear ribonucleoproteinSmall nuclear ribonucleoproteinHistone messenger RNAInsertion mutantsEnd formationSite of cleavageEnd processingDownstream elementsA residuesMessenger RNAAnti-trimethylguanosine antibodyStem-loop structureWild-type substrateCross-linking studiesPremessenger RNANuclear ribonucleoproteinEnzymatic componentsNew cleavage siteNucleotides downstreamC residuesMolecular rulerCleavage siteRNAHistones
1993
A general two-metal-ion mechanism for catalytic RNA.
Steitz TA, Steitz JA. A general two-metal-ion mechanism for catalytic RNA. Proceedings Of The National Academy Of Sciences Of The United States Of America 1993, 90: 6498-6502. PMID: 8341661, PMCID: PMC46959, DOI: 10.1073/pnas.90.14.6498.Peer-Reviewed Original ResearchMeSH KeywordsCatalysisCations, DivalentEndoribonucleasesEscherichia coli ProteinsHydrolysisIntronsMagnesiumModels, ChemicalRibonuclease PRNA Processing, Post-TranscriptionalRNA SplicingRNA, CatalyticRNA, TransferSpliceosomesConceptsMetal ionsTwo-metal-ion mechanismCatalytic metal ionPhosphoryl transfer reactionsChemical catalysisLewis acidTransfer reactionsReaction pathwaysTransition stateProtein enzymesCatalytic siteSugar hydroxylsIonsGroup I self-splicing intronCatalytic RNAReactionSelf-splicing intronsP hydrolysisCatalysisBinding sitesOxyanionsHydroxylSpecific binding sitesHydrolysisAcidA small nucleolar RNA is processed from an intron of the human gene encoding ribosomal protein S3.
Tycowski KT, Shu MD, Steitz JA. A small nucleolar RNA is processed from an intron of the human gene encoding ribosomal protein S3. Genes & Development 1993, 7: 1176-1190. PMID: 8319909, DOI: 10.1101/gad.7.7a.1176.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceCell NucleolusCell-Free SystemConserved SequenceElectrophoresis, Polyacrylamide GelHeLa CellsHumansIntronsMolecular Sequence DataNucleic Acid ConformationRestriction MappingRibosomal ProteinsRNA PrecursorsRNA Processing, Post-TranscriptionalRNA, Small NuclearSequence Analysis, RNAUracil NucleotidesConceptsSmall nucleolar RNAsNucleolar RNAsRibosomal protein S3 geneNuclear RNA polymerasesSingle-copy geneSingle primary transcriptRibosomal protein S3Secondary structure modelStem-loop structureVertebrate cellsNucleolar proteinsProtein S3Transcription signalsHuman genesRNA polymerasePrimary transcriptConserved sequencesS3 geneNucleolar snRNASame strandS3 mRNANucleotides downstreamMature endNucleolar componentsIntron 1Association with terminal exons in pre-mRNAs: a new role for the U1 snRNP?
Wassarman KM, Steitz JA. Association with terminal exons in pre-mRNAs: a new role for the U1 snRNP? Genes & Development 1993, 7: 647-659. PMID: 8384583, DOI: 10.1101/gad.7.4.647.Peer-Reviewed Original ResearchAdenoviridaeBase SequenceBinding SitesCross-Linking ReagentsDNA Mutational AnalysisExonsFurocoumarinsHeLa CellsHistonesHumansMolecular Sequence DataOligonucleotide ProbesPoly ARestriction MappingRibonucleoprotein, U1 Small NuclearRNA PrecursorsRNA Processing, Post-TranscriptionalRNA SplicingRNA, Small NuclearSimian virus 40
1991
Multiple processing-defective mutations in a mammalian histone pre-mRNA are suppressed by compensatory changes in U7 RNA both in vivo and in vitro.
Bond UM, Yario TA, Steitz JA. Multiple processing-defective mutations in a mammalian histone pre-mRNA are suppressed by compensatory changes in U7 RNA both in vivo and in vitro. Genes & Development 1991, 5: 1709-1722. PMID: 1885007, DOI: 10.1101/gad.5.9.1709.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase CompositionBase SequenceGene ExpressionGenes, SyntheticHeLa CellsHistonesHumansMiceMolecular Sequence DataMutationRNA PrecursorsRNA Processing, Post-TranscriptionalRNA, Small NuclearSuppression, GeneticTransfectionConceptsHistone downstream elementHistone pre-mRNAMammalian histone pre-mRNAsPre-mRNAHeLa cellsBase pair regionMammalian histonesU7 geneSm snRNPsU7 snRNPGenetic evidenceU7 snRNAUnexpected toleranceU7 RNANuclear extractsDownstream elementsSuppressor geneCompensatory changesGenesBlock substitutionsRNAVivoSnRNPsSnRNPCells
1990
The U3 small nucleolar ribonucleoprotein functions in the first step of preribosomal RNA processing
Kass S, Tyc K, Steitz J, Sollner-Webb B. The U3 small nucleolar ribonucleoprotein functions in the first step of preribosomal RNA processing. Cell 1990, 60: 897-908. PMID: 2156625, DOI: 10.1016/0092-8674(90)90338-f.Peer-Reviewed Original ResearchAnimalsBase SequenceBlotting, NorthernCarcinoma, Ehrlich TumorCell NucleolusDNA, RibosomalEndoribonucleasesMiceMolecular Sequence DataNucleic Acid ConformationOligonucleotide ProbesRibonuclease HRibonucleoproteinsRibonucleoproteins, Small NuclearRNA PrecursorsRNA Processing, Post-TranscriptionalRNA, Small NuclearTemplates, Genetic