2021
Impact of reconstruction parameters on lesion detection and localization in joint ictal/inter-ictal SPECT reconstruction
Onwanna J, Chantadisai M, Tepmongkol S, Fahey F, Ouyang J, Rakvongthai Y. Impact of reconstruction parameters on lesion detection and localization in joint ictal/inter-ictal SPECT reconstruction. Annals Of Nuclear Medicine 2021, 36: 24-32. PMID: 34559366, DOI: 10.1007/s12149-021-01680-x.Peer-Reviewed Original ResearchConceptsLocalization receiver operating characteristicsDetection performanceSubtraction methodJoint methodOptimization iterationsLesion detection performanceSPECT reconstructionEpileptic focus localizationLocalization receiver operating characteristic curvesDifferential imagingInter-ictalLesion detectionIterationPhantom dataConventional subtraction methodPerformanceImagesPatient datasetsReconstruction parametersImpact of reconstruction parametersFocus localizationSubtractionDetectionSPECT dataJoint reconstruction
2018
Joint reconstruction of rest/stress myocardial perfusion SPECT
Lai X, Petibon Y, Fakhri G, Ouyang J. Joint reconstruction of rest/stress myocardial perfusion SPECT. Physics In Medicine And Biology 2018, 63: 135019. PMID: 29897044, PMCID: PMC6245543, DOI: 10.1088/1361-6560/aacc2f.Peer-Reviewed Original ResearchConceptsMyocardial perfusion imagingSingle photon emission computed tomographyReversible defectsSignal-to-noise ratioRest/stress SPECT myocardial perfusion imagingSPECT myocardial perfusion imagingConventional subtraction methodDefect detectionJoint methodPhoton emission computed tomographySubtraction methodReverse mappingClinical dose levelsEmission computed tomographyImprove defect detectionLow noiseNon-invasive assessmentClinical dosePerfusion defectsReduced doseImprove radiologists' performanceReconstruction frameworkRest imagesPerfusion imagingDose levels
2017
Joint reconstruction of Ictal/inter‐ictal SPECT data for improved epileptic foci localization
Rakvongthai Y, Fahey F, Borvorntanajanya K, Tepmongkol S, Vutrapongwatana U, Zukotynski K, Fakhri G, Ouyang J. Joint reconstruction of Ictal/inter‐ictal SPECT data for improved epileptic foci localization. Medical Physics 2017, 44: 1437-1444. PMID: 28211105, PMCID: PMC5462456, DOI: 10.1002/mp.12167.Peer-Reviewed Original ResearchConceptsSPECT reconstruction methodDifferential imagingLow-noise datasetConventional subtraction methodLesion contrastSPECT projection dataEpileptic focus localizationHoffman phantomPatient studiesReconstruction methodJoint methodSPECT projectionsHead phantomPhantom locationsSubtraction methodPhantom studyNuclear medicine physiciansAttenuation backgroundPhantomConventional subtraction approachFocus localizationConventional subtractionReceiver operating characteristicLow noiseProjection dataDirect parametric reconstruction in dynamic PET myocardial perfusion imaging: in vivo studies
Petibon Y, Rakvongthai Y, Fakhri G, Ouyang J. Direct parametric reconstruction in dynamic PET myocardial perfusion imaging: in vivo studies. Physics In Medicine And Biology 2017, 62: 3539-3565. PMID: 28379843, PMCID: PMC5739089, DOI: 10.1088/1361-6560/aa6394.Peer-Reviewed Original ResearchConceptsPET sinogramsSignal-to-noise ratioList-mode PET dataSiemens Biograph mMR scannerList-mode dataMyocardial perfusion imagingNoise realizationsPET myocardial perfusion imagingLow count levelsLeast-squares fitBiograph mMR scannerPET projection dataOriginal list-mode dataMyocardial blood flowCount levelsParametric reconstructionOSEMReconstruction methodIndependent noise realizationsNormal count levelsSinogramDirect reconstructionDynamic sinogramsKinetic modelPoor signal-to-noise ratio
2014
4D numerical observer for lesion detection in respiratory‐gated PET
Lorsakul A, Li Q, Trott C, Hoog C, Petibon Y, Ouyang J, Laine A, Fakhri G. 4D numerical observer for lesion detection in respiratory‐gated PET. Medical Physics 2014, 41: 102504. PMID: 25281979, PMCID: PMC4281099, DOI: 10.1118/1.4895975.Peer-Reviewed Original ResearchMeSH KeywordsAlgorithmsComputer SimulationFluorodeoxyglucose F18HumansImage Interpretation, Computer-AssistedLung DiseasesModels, BiologicalMonte Carlo MethodMotionPhantoms, ImagingPositron-Emission TomographyRadiopharmaceuticalsRegression AnalysisRespiratory-Gated Imaging TechniquesSignal-To-Noise RatioConceptsRespiratory-gated positron emission tomographyMotion-corrected imagesDetection signal-to-noise ratioLesion detection taskNumerical observationsLesion detection performanceSignal-to-noise ratioPositron emission tomography sinogramsSpherical lesionsHotelling observerMotion correction methodPositron emission tomographyGeant4 ApplicationTomographic EmissionChannelized Hotelling observerAnthropomorphic phantomScanner geometryOSEM algorithmMonte Carlo simulationsPET framesImprove lesion detectionLesion detectionSignal-to-noise ratio measurementsActivity distributionConventional 3D approachMotion compensation for brain PET imaging using wireless MR active markers in simultaneous PET–MR: Phantom and non-human primate studies
Huang C, Ackerman J, Petibon Y, Normandin M, Brady T, Fakhri G, Ouyang J. Motion compensation for brain PET imaging using wireless MR active markers in simultaneous PET–MR: Phantom and non-human primate studies. NeuroImage 2014, 91: 129-137. PMID: 24418501, PMCID: PMC3965607, DOI: 10.1016/j.neuroimage.2013.12.061.Peer-Reviewed Original ResearchConceptsMotion correctionWireless markersList-mode reconstructionReconstructed PET imagesMotion correction techniqueObserver signal-to-noise ratioSimultaneous PET-MRMotion artifactsPET phantomPET contrastPET reconstructionBrain PET imagingPET imagingPhantomBrain PETPET-MRIndependent noise realizationsAccurate quantitative valuesHead motionNoise realizationsPET dataSignal-to-noise ratioStatic referenceBrain PET scansActivation markers