Using statistical and machine learning to help institutions detect suspicious access to electronic health records
Boxwala A, Kim J, Grillo J, Ohno-Machado L. Using statistical and machine learning to help institutions detect suspicious access to electronic health records. Journal Of The American Medical Informatics Association 2011, 18: 498-505. PMID: 21672912, PMCID: PMC3128412, DOI: 10.1136/amiajnl-2011-000217.Peer-Reviewed Original ResearchConceptsSuspicious accessMachine-learning methodsPrivacy officersMachine learning techniquesVector machine modelAccess logsElectronic health recordsBaseline methodsAccess dataCross-validation setGold standard setSVM modelWhole data setMachine modelBaseline modelOrganizational dataHealth recordsData setsSVM