2018
Combine Factual Medical Knowledge and Distributed Word Representation to Improve Clinical Named Entity Recognition.
Wu Y, Yang X, Bian J, Guo Y, Xu H, Hogan W. Combine Factual Medical Knowledge and Distributed Word Representation to Improve Clinical Named Entity Recognition. AMIA Annual Symposium Proceedings 2018, 2018: 1110-1117. PMID: 30815153, PMCID: PMC6371322.Peer-Reviewed Original ResearchConceptsRecurrent neural networkWord embeddingsOne-hot vectorsWord representationsLow-frequency wordsOnly word embeddingsClinical Named Entity RecognitionClinical NER tasksWord embedding methodsConditional Random FieldsStatistical language modelNamed Entity RecognitionUnlabeled corpusLanguage modelLanguage systemNER taskDecent representationFactual medical knowledgeImportant wordsDeep learning modelsEntity recognitionClinical corpusNamed Entity Recognition SystemArt performanceFeature representation
2015
A Study of Neural Word Embeddings for Named Entity Recognition in Clinical Text.
Wu Y, Xu J, Jiang M, Zhang Y, Xu H. A Study of Neural Word Embeddings for Named Entity Recognition in Clinical Text. AMIA Annual Symposium Proceedings 2015, 2015: 1326-33. PMID: 26958273, PMCID: PMC4765694.Peer-Reviewed Original ResearchConceptsNamed Entity RecognitionClinical NER systemNeural word embeddingsClinical Named Entity RecognitionWord embeddingsNER systemWord representationsI2b2 dataEntity recognitionEmbedding featuresClinical textNatural language processing researchConditional Random FieldsLanguage processing researchWord embedding featuresLarge unlabeled corpusBrown clustersNeural wordImportant patient informationFeature representationF1 scoreIntelligent monitoringCritical taskUnlabeled corpusSemantic relations