2022
A guide to molecular and functional investigations of platelets to bridge basic and clinical sciences
Tyagi T, Jain K, Gu S, Qiu M, Gu V, Melchinger H, Rinder H, Martin K, Gardiner E, Lee A, Tang W, Hwa J. A guide to molecular and functional investigations of platelets to bridge basic and clinical sciences. Nature Cardiovascular Research 2022, 1: 223-237. PMID: 37502132, PMCID: PMC10373053, DOI: 10.1038/s44161-022-00021-z.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsVascular smooth muscle cellsPlatelet functional assaysCoronavirus disease 2019Smooth muscle cellsImmune cellsImmune regulationVascular remodelingDisease 2019Pathophysiological processesTranslational relevancePatient diagnosisFlow cytometryMuscle cellsPlatelet biologyFunctional assaysPlatelet investigationsHomeostatic processesPlateletsPhenotypic heterogeneityFunctional stateClinical scienceCellsAdditional roleThrombosisSuch diverse functions
1998
Platelet function testing by flow cytometry.
Rinder H. Platelet function testing by flow cytometry. Clinical Laboratory Science 1998, 11: 365-72. PMID: 10345505.Peer-Reviewed Original ResearchConceptsFlow cytometryPlatelet functionEx vivo platelet functionVivo platelet functionPlatelet function testingIntracellular calcium fluxExposure of plateletsPlatelet glycoprotein receptorsFluorescent monoclonal antibodiesFunction testingPlatelet aggregationActivation statusCalcium fluxMonoclonal antibodiesMicroparticle generationCytometryGranule contentsCytometric methodologyPlateletsGlycoprotein receptorsSecretionAntibodiesReceptors
1993
Determination of the percentage of thiazole orange (TO)‐positive, “reticulated” platelets using autologous erythrocyte TO fluorescence as an internal standard
Bonan J, Rinder H, Smith B. Determination of the percentage of thiazole orange (TO)‐positive, “reticulated” platelets using autologous erythrocyte TO fluorescence as an internal standard. Cytometry 1993, 14: 690-694. PMID: 8404376, DOI: 10.1002/cyto.990140615.Peer-Reviewed Original ResearchAspirin Does Not Inhibit Adenosine Diphosphate-Induced Platelet α-Granule Release
Rinder C, Student L, Bonan J, Rinder H, Smith B. Aspirin Does Not Inhibit Adenosine Diphosphate-Induced Platelet α-Granule Release. Blood 1993, 82: 505-512. PMID: 7687162, DOI: 10.1182/blood.v82.2.505.505.Peer-Reviewed Original ResearchConceptsP-selectin expressionAlpha-granule secretionPlatelet alpha-granule secretionAspirin treatmentP-selectinGranule secretionPlatelet alpha-granule releaseArachidonic acidCyclooxygenase-dependent metabolitesPlatelet surface expressionPlatelet α-granule releasePlatelet dense granule secretionAlpha-granule releaseΑ-granule releaseDense granule secretionPolymorphonuclear lymphocytesAmiloride treatmentLipoxygenase inhibitorsAspirinSecretionWhole bloodPlatelet-platelet interactionsTreatmentInvolvement of metabolitesPlateletsAspirin does not inhibit adenosine diphosphate-induced platelet alpha- granule release
Rinder C, Student L, Bonan J, Rinder H, Smith B. Aspirin does not inhibit adenosine diphosphate-induced platelet alpha- granule release. Blood 1993, 82: 505-512. DOI: 10.1182/blood.v82.2.505.bloodjournal822505.Peer-Reviewed Original ResearchP-selectin expressionAlpha-granule secretionPlatelet alpha-granule secretionAspirin treatmentP-selectinGranule secretionPlatelet alpha-granule releaseArachidonic acidCyclooxygenase-dependent metabolitesPlatelet surface expressionPlatelet dense granule secretionAlpha-granule releaseDense granule secretionPolymorphonuclear lymphocytesAmiloride treatmentLipoxygenase inhibitorsAspirinSecretionWhole bloodPlatelet-platelet interactionsTreatmentInvolvement of metabolitesPlateletsExpressionADP
1992
The Significance of Platelets with Increased RNA Content (Reticulated Platelets) A Measure of the Rate of Thrombopoiesis
Ault K, Rinder H, Mitchell J, Carmody M, Vary C, Hillman R. The Significance of Platelets with Increased RNA Content (Reticulated Platelets) A Measure of the Rate of Thrombopoiesis. American Journal Of Clinical Pathology 1992, 98: 637-646. PMID: 1281383, DOI: 10.1093/ajcp/98.6.637.Peer-Reviewed Original ResearchConceptsPlatelet-associated immunoglobulinsRate of thrombopoiesisThrombocytopenic patientsAbsolute numberSignificance of plateletsSubset of patientsNucleic acid contentAnti-platelet antiserumStudies of micePeripheral destructionPlatelet countReticulocyte responseSubnormal levelsNormal rangePatientsAverage absolute numberFlow cytometric measurementsThrombopoietic responseNormal levelsPlatelet increaseElevated levelsFluorescent dye thiazole orangeImmunoglobulinPlateletsCytometric measurementsCardiopulmonary bypass induces leukocyte-platelet adhesion
Rinder C, Bonan J, Rinder H, Mathew J, Hines R, Smith B. Cardiopulmonary bypass induces leukocyte-platelet adhesion. Blood 1992, 79: 1201-1205. DOI: 10.1182/blood.v79.5.1201.bloodjournal7951201.Peer-Reviewed Original ResearchLeukocyte-platelet conjugatesCardiopulmonary bypassMonocyte-platelet conjugatesEnd of CPBStart of CPBActivation of monocytesAlpha-granule releaseGMP-140 expressionGranule membrane protein-140Time courseLeukocyte-platelet adhesionCD11b expressionMonocyte activationSurface CD11bWhole bloodGMP-140Surface expressionProtein 140Increased numberCD11bBypassMonocytesPlateletsPlatelet adhesionConjugatesCardiopulmonary Bypass Induces Leukocyte-Platelet Adhesion
Rinder C, Bonan J, Rinder H, Mathew J, Hines R, Smith B. Cardiopulmonary Bypass Induces Leukocyte-Platelet Adhesion. Blood 1992, 79: 1201-1205. PMID: 1371416, DOI: 10.1182/blood.v79.5.1201.1201.Peer-Reviewed Original ResearchConceptsLeukocyte-platelet conjugatesCardiopulmonary bypassMonocyte-platelet conjugatesEnd of CPBStart of CPBActivation of monocytesAlpha-granule releaseGMP-140 expressionGranule membrane protein-140Time courseLeukocyte-platelet adhesionCD11b expressionMonocyte activationSurface CD11bWhole bloodGMP-140Surface expressionProtein 140Increased numberCD11bBypassMonocytesPlateletsPlatelet adhesionConjugates
1991
Platelet Activation and Aggregation during Cardiopulmonary Bypass
Rinder C, Bohnert J, Rinder H, Mitchell J, Ault K, Hillman R. Platelet Activation and Aggregation during Cardiopulmonary Bypass. Anesthesiology 1991, 75: 388-393. PMID: 1716077, DOI: 10.1097/00000542-199109000-00002.Peer-Reviewed Original ResearchConceptsCardiopulmonary bypassPlatelet activationPlatelet aggregationExtracorporeal circulationEarly postoperative periodAlpha-granule releaseGMP-140 expressionPlatelet factor 4Granule membrane protein-140Alpha-granule membrane proteinPlatelet surface membranePostoperative periodPlatelet dysfunctionPlasma concentrationsIndividual patientsBypassFlow cytometryPlatelet defectsGranule productsMonoclonal antibodiesProtein 140Factor 4PlateletsPatientsAggregation defectProgressive platelet activation with storage: evidence for shortened survival of activated platelets after transfusion
Rinder H, Murphy M, Mitchell J, Stocks J, Ault K, Hillman R. Progressive platelet activation with storage: evidence for shortened survival of activated platelets after transfusion. Transfusion 1991, 31: 409-414. PMID: 1710840, DOI: 10.1046/j.1537-2995.1991.31591263195.x.Peer-Reviewed Original ResearchConceptsPercentage of plateletsPlatelet activationNormal subjectsProgressive platelet activationThrombocytopenic cancer patientsPlatelet concentrate transfusionAlpha-granule membrane protein-140Significant platelet activationConcentrate transfusionPlatelet incrementCancer patientsPlatelet recoveryThrombocytopenic patientsAutologous plateletsPosttransfusion recoveryFlow cytometryStandard blood bank conditionsGMP-140Protein 140PlateletsTransfusionPlatelet surfacePatientsSuch activationDay of collection