2024
1577-P: CIDEB Knockdown Promotes Increased Hepatic Mitochondrial Fat Oxidation and Reverses Hepatic Steatosis and Hepatic Insulin Resistance by the PKCε-Insulin Receptor Kinase Pathway
ZHENG J, NASIRI A, GASPAR R, HUBBARD B, SAKUMA I, MA X, MURRAY S, PERELIS M, BARNES W, SAMUEL V, PETERSEN K, SHULMAN G. 1577-P: CIDEB Knockdown Promotes Increased Hepatic Mitochondrial Fat Oxidation and Reverses Hepatic Steatosis and Hepatic Insulin Resistance by the PKCε-Insulin Receptor Kinase Pathway. Diabetes 2024, 73 DOI: 10.2337/db24-1577-p.Peer-Reviewed Original ResearchReceptor kinase pathwaysMitochondrial fat oxidationHepatic insulin resistanceKinase pathwayExpression of cidebAmeliorated HFD-induced hepatic steatosisHFD-induced hepatic steatosisHFD-induced insulin resistanceSteatotic liver diseasePathogenesis of type 2 diabetesHepatic steatosisCidebHyperinsulinemic-euglycemic clamp studiesHepatic triglyceride accumulationInsulin resistanceReverse hepatic steatosisTriglyceride accumulationHepatic insulin sensitivityInsulin sensitivityPathwayHepatic expressionHigh-fatWhole-body insulin sensitivityLiver diseaseTranslocation
2021
335-OR: Lipid-Induced Insulin Resistance in the Renal Cortex Is Associated with Plasma Membrane Sn-1,2-diacylglycerol Accumulation and PKCe Translocation
HUBBARD B, GASPAR R, ZHANG D, KAHN M, NASIRI A, ZHANG X, CLINE G, SHULMAN G. 335-OR: Lipid-Induced Insulin Resistance in the Renal Cortex Is Associated with Plasma Membrane Sn-1,2-diacylglycerol Accumulation and PKCe Translocation. Diabetes 2021, 70 DOI: 10.2337/db21-335-or.Peer-Reviewed Original ResearchHigh-fat dietInsulin receptorInsulin resistanceLipid-Induced Insulin ResistanceRC miceProtein kinase CεRegular chowHFD miceRenal cortexCitrate synthase fluxHyperinsulinemic-euglycemic clamp conditionsAktS473 phosphorylationFatty acid fluxPyruvate oxidationPKCε translocationPyruvate dehydrogenase fluxPhosphorylationDiacylglycerol accumulationHFD feedingFat dietSpouse/partnerFold increaseSynthase fluxTranslocationIonis Pharmaceuticals
1999
Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR
Russell R, Bergeron R, Shulman G, Young L. Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. American Journal Of Physiology 1999, 277: h643-h649. PMID: 10444490, DOI: 10.1152/ajpheart.1999.277.2.h643.Peer-Reviewed Original ResearchMeSH KeywordsAminoimidazole CarboxamideAMP-Activated Protein KinasesAnimalsBiological TransportEnzyme ActivationGlucoseGlucose Transporter Type 4In Vitro TechniquesMaleMonosaccharide Transport ProteinsMultienzyme ComplexesMuscle ProteinsMyocardiumProtein Serine-Threonine KinasesRatsRats, Sprague-DawleyRibonucleotidesSarcolemmaConceptsAMPK activationGLUT-4 translocationGLUT-4Glucose uptakeProtein kinase activityActivator of AMPKActivation of AMPKInsulin-stimulated increasePI3K-independent pathwayInsulin-stimulated glucose uptakePI3K inhibitorsKinase activityAICARDeoxyglucose uptakeAMPKTranslocationIschemia-induced translocationK inhibitorsAdenine 9Myocyte sarcolemmaPathwayImmunofluorescence studiesMuscle glucose uptakeActivationCardiac myocytesRegulation of myocardial glucose uptake and transport during ischemia and energetic stress
Young L, Russell R, Yin R, Caplan M, Ren J, Bergeron R, Shulman G, Sinusas A. Regulation of myocardial glucose uptake and transport during ischemia and energetic stress. The American Journal Of Cardiology 1999, 83: 25-30. PMID: 10750583, DOI: 10.1016/s0002-9149(99)00253-2.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsEnergetic stressEnergy-generating metabolic pathwaysMonophosphate-activated protein kinaseGlucose uptakeGlucose transport proteinProtein kinaseTransporter translocationTransport proteinsMolecular mechanismsMetabolic pathwaysCardiac glucose uptakeGlucose transporterCellular mechanismsGlucose transportFuel gaugeKinaseTranslocationGlucose entryModerate regional ischemiaSubsequent metabolismGlucose utilization increasesImportant roleUptakeGLUT4Stress