2024
PET motion correction using subspace-based real-time MR imaging in simultaneous PET/MR
Mounime I, Marin T, Han P, Ouyang J, Gori P, Angelini E, Fakhri G, Ma C. PET motion correction using subspace-based real-time MR imaging in simultaneous PET/MR. 2024, 00: 1-1. DOI: 10.1109/nss/mic/rtsd57108.2024.10657647.Peer-Reviewed Original ResearchOrdered-subset expectation maximizationMotion correctionGated reconstructionsMotion-corrected PET reconstructionsPET eventsCardiac motion phasesMotion correction methodCardiac motionMotion phaseReconstructed dynamic imagesPET reconstructionReal-time MR imagingSimultaneous PET/MRPatient motionSoft tissue contrastDynamic MR image reconstructionReference phaseMitigate artifactsLow-rank propertyMR image reconstructionPositron emission tomographyManifold learning frameworkSpatial resolutionBlurring artifactsImage reconstruction
2020
Motion correction for PET data using subspace-based real-time MR imaging in simultaneous PET/MR
Marin T, Djebra Y, Han P, Chemli Y, Bloch I, Fakhri G, Ouyang J, Petibon Y, Ma C. Motion correction for PET data using subspace-based real-time MR imaging in simultaneous PET/MR. Physics In Medicine And Biology 2020, 65: 235022. PMID: 33263317, PMCID: PMC7985095, DOI: 10.1088/1361-6560/abb31d.Peer-Reviewed Original ResearchConceptsPositron emission tomography reconstructionMotion-corrected PET reconstructionsPET reconstructionMotion-corrected PET imagesIrregular respiratory motionMotion fieldMotion correction methodMotion correction approachIrregular motion patternsUndersampled k-space dataImage quality of positron emission tomographyQuality of positron emission tomographyMotion patternsLow-rank characteristicsRespiratory motionContrast-to-noise ratioEstimated motion fieldSurrogate signalsMotion correctionK-space dataImage qualityReal-time MR imagingSimultaneous PET/MRMotion artifact reductionPET/MR scanners
2019
Time of flight PET reconstruction using nonuniform update for regional recovery uniformity
Kim K, Kim D, Yang J, Fakhri G, Seo Y, Fessler J, Li Q. Time of flight PET reconstruction using nonuniform update for regional recovery uniformity. Medical Physics 2019, 46: 649-664. PMID: 30508255, PMCID: PMC6501218, DOI: 10.1002/mp.13321.Peer-Reviewed Original ResearchConceptsSignal-to-noise ratio regionVariant step sizeSignal-to-noise ratioNesterov momentumOS-SQSUniform recoveryOS-EMStep sizeNon-TOF PETOrdered subsetsQuad-core CPUEarly stopping criterionGraphics processing unitsTime-of-flight PET reconstructionReconstruction methodPET reconstruction methodsNesterov's momentum methodImage qualityPET reconstructionTOF-PETOverall signal-to-noise ratioActive regionLow activity regionsComputer simulationsRecovery ratio
2018
Penalized PET Reconstruction Using Deep Learning Prior and Local Linear Fitting
Kim K, Wu D, Gong K, Dutta J, Kim J, Son Y, Kim H, Fakhri G, Li Q. Penalized PET Reconstruction Using Deep Learning Prior and Local Linear Fitting. IEEE Transactions On Medical Imaging 2018, 37: 1478-1487. PMID: 29870375, PMCID: PMC6375088, DOI: 10.1109/tmi.2018.2832613.Peer-Reviewed Original ResearchConceptsDeep learningDenoising convolutional neural networkConvolutional neural networkDeep learning-basedPerformance of iterative reconstructionPotential of deep learningDeep networksNoise levelLearning-basedReconstruction frameworkDegradation of performanceNeural networkDnCNNMedical imagesDownsampled dataFitness functionPoisson thinningFull-dose imagesLow dose imagesNoise conditionsNetworkImage qualityPET reconstructionDose imagesDeep
2014
Tof-Pet Ordered Subset Reconstruction Using Non-Uniform Separable Quadratic Surrogates Algorithm
Kim K, Ye J, Cheng L, Ying K, Fakhri G, Li Q. Tof-Pet Ordered Subset Reconstruction Using Non-Uniform Separable Quadratic Surrogates Algorithm. 2014, 963-966. DOI: 10.1109/isbi.2014.6868032.Peer-Reviewed Original ResearchSignal-to-noise ratioQuadratic surrogatesTOF-basedAlgorithm timeNoise ratioReconstruction algorithmReconstructed imagesAlgorithmConvergence rateImage qualityPET reconstructionTransmission reconstructionComputer simulationsTOF PET reconstructionTOF-PETEmission reconstructionAccurate imagingImagesSmall regionConvergenceComputerReconstructionNon-uniformityOSEMMR‐based motion correction for PET imaging using wired active MR microcoils in simultaneous PET‐MR: Phantom study
Huang C, Ackerman J, Petibon Y, Brady T, Fakhri G, Ouyang J. MR‐based motion correction for PET imaging using wired active MR microcoils in simultaneous PET‐MR: Phantom study. Medical Physics 2014, 41: 041910. PMID: 24694141, PMCID: PMC3978416, DOI: 10.1118/1.4868457.Peer-Reviewed Original ResearchConceptsMotion correctionMR-based motion correctionStatic phantom dataPET quantitative accuracyPET-MRPET-MR scannersSimultaneous PET-MRHoffman phantomList-modePositron emission tomography imagingPET reconstructionBrain positron emission tomographyIterative PET reconstructionPhantom dataPhantomQuantitative accuracyIndependent noise realizationsImage contrastNoise realizationsHead motionPET dataPositron emission tomographyStatic referenceBrain PET scansMotion artifactsTowards coronary plaque imaging using simultaneous PET-MR: a simulation study
Petibon Y, Fakhri G, Nezafat R, Johnson N, Brady T, Ouyang J. Towards coronary plaque imaging using simultaneous PET-MR: a simulation study. Physics In Medicine And Biology 2014, 59: 1203-1222. PMID: 24556608, PMCID: PMC4061607, DOI: 10.1088/0031-9155/59/5/1203.Peer-Reviewed Original ResearchMeSH KeywordsComputer SimulationCoronary AngiographyCoronary StenosisHumansImage Interpretation, Computer-AssistedImaging, Three-DimensionalMagnetic Resonance AngiographyModels, CardiovascularMultimodal ImagingPhantoms, ImagingPositron-Emission TomographyReproducibility of ResultsSensitivity and SpecificityConceptsSimultaneous PET-MRChannelized Hotelling observerAttenuation mapMotion correctionPET-MRFluorodeoxyglucose-positron emission tomography imagingRespiratory motion fieldsMotion correction methodCho SNRMotion correction techniqueAnthropomorphic phantomUncorrected reconstructionsRespiratory motionXCAT phantomCoronary plaque imagingMonte Carlo simulationsPET reconstructionXCATActivity distributionCardiac gatingNon-rigid registrationHotelling observerCarlo simulationsPlaque imagingPhantomMotion compensation for brain PET imaging using wireless MR active markers in simultaneous PET–MR: Phantom and non-human primate studies
Huang C, Ackerman J, Petibon Y, Normandin M, Brady T, Fakhri G, Ouyang J. Motion compensation for brain PET imaging using wireless MR active markers in simultaneous PET–MR: Phantom and non-human primate studies. NeuroImage 2014, 91: 129-137. PMID: 24418501, PMCID: PMC3965607, DOI: 10.1016/j.neuroimage.2013.12.061.Peer-Reviewed Original ResearchConceptsMotion correctionWireless markersList-mode reconstructionReconstructed PET imagesMotion correction techniqueObserver signal-to-noise ratioSimultaneous PET-MRMotion artifactsPET phantomPET contrastPET reconstructionBrain PET imagingPET imagingPhantomBrain PETPET-MRIndependent noise realizationsAccurate quantitative valuesHead motionNoise realizationsPET dataSignal-to-noise ratioStatic referenceBrain PET scansActivation markers
2013
Bias Atlases for Segmentation-Based PET Attenuation Correction Using PET-CT and MR
Ouyang J, Chun Y, Petibon Y, Bonab A, Alpert N, Fakhri G. Bias Atlases for Segmentation-Based PET Attenuation Correction Using PET-CT and MR. IEEE Transactions On Nuclear Science 2013, 60: 3373-3382. PMID: 24966415, PMCID: PMC4067048, DOI: 10.1109/tns.2013.2278624.Peer-Reviewed Original ResearchAttenuation correctionBias imagesLung density variationsPET attenuation correctionPET-MR scannersAttenuation mapFat identificationOriginal CTPET reconstructionOverall standard deviationPET-MRMR imagingVariation of biasDensity variationsCT-based studyPET accuracyPET-CTStandard deviation of biasCorrectionFat segmentationTissue classesPatientsSoft tissueAttenuationLungSpatially varying regularization for motion compensated PET reconstruction
Dutta J, Fakhri G, Lin Y, Huang C, Petibon Y, Reese T, Leahy R, Li Q. Spatially varying regularization for motion compensated PET reconstruction. 2011 IEEE Nuclear Science Symposium Conference Record 2013, 2156-2160. DOI: 10.1109/nssmic.2012.6551493.Peer-Reviewed Original ResearchSimulated lung lesionsRegularization schemeSpatially varying regularizationUngated reconstructionTorso phantomImage reconstruction problemContrast recoverySacrificing signal-to-noise ratioPET reconstructionSignal-to-noise ratioAnalytical approximationReconstruction frameworkQuadratic penaltyDiagonal elementsReconstruction problemLocal impulse responseCardiac motionRegularization approachReconstructed imagesFisher information matrixAutomated fashionPET imagingImpulse responseDegree of smoothnessInformation matrixRESPIRATORY MOTION COMPENSATION IN SIMULTANEOUS PET/MR USING A MAXIMUM A POSTERIORI APPROACH
Dutta J, Fakhri G, Huang C, Petibon Y, Reese T, Li Q. RESPIRATORY MOTION COMPENSATION IN SIMULTANEOUS PET/MR USING A MAXIMUM A POSTERIORI APPROACH. 2013, 800-803. DOI: 10.1109/isbi.2013.6556596.Peer-Reviewed Original ResearchGated MR imagesSimultaneous PET/MRRespiratory motion compensationPulse sequencePET image reconstructionBiograph mMR scannerEstimation of deformation fieldsReference gateRespiratory motionAttenuation mapTime binsPET reconstructionWhole-body PET/MR imagingAnatomical MR imagesMotion artifactsPET/MR dataNon-rigid registrationFLASH pulse sequenceSacrificing image qualityPET/MR imagingImage reconstructionGateSimultaneous acquisitionMaximum-a-posteriori approachDeformation fieldClinical impact of time-of-flight and point response modeling in PET reconstructions: a lesion detection study
Schaefferkoetter J, Casey M, Townsend D, Fakhri G. Clinical impact of time-of-flight and point response modeling in PET reconstructions: a lesion detection study. Physics In Medicine And Biology 2013, 58: 1465-1478. PMID: 23403399, PMCID: PMC3616316, DOI: 10.1088/0031-9155/58/5/1465.Peer-Reviewed Original ResearchConceptsPoint spread functionTime-of-flightBenefit of TOFPET reconstructionNumerical modelOptimal reconstruction parametersLocalization receiver operating characteristicsLesion-detection studiesObserved SNRReconstruction schemeSpread functionReconstruction parametersPerformanceNumerical observationsPatient imagesMagnetic Resonance-Based Motion Correction for Positron Emission Tomography Imaging
Ouyang J, Li Q, Fakhri G. Magnetic Resonance-Based Motion Correction for Positron Emission Tomography Imaging. Seminars In Nuclear Medicine 2013, 43: 60-67. PMID: 23178089, PMCID: PMC3508789, DOI: 10.1053/j.semnuclmed.2012.08.007.Peer-Reviewed Original ResearchConceptsMotion correctionClinical whole-body PET scannersMotion-corrected PET imagesWhole-body PET scannerPET motion correctionNonrigid image registration algorithmAcquired MR imagesRespiratory motionImage registration algorithmPET scannerSimultaneous PET/magnetic resonancePET reconstructionSimultaneous PET/MRPatient motionImage qualityIterative PET reconstructionPET/MR studiesPET/magnetic resonanceAttenuating mediaImage artifactsRegistration algorithmSpatial resolutionReconstruction algorithmPositron emission tomographyMR imaging techniques