2021
Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia
Zhu X, Zhou B, Pattni R, Gleason K, Tan C, Kalinowski A, Sloan S, Fiston-Lavier AS, Mariani J, Petrov D, Barres BA, Duncan L, Abyzov A, Vogel H, Moran J, Vaccarino F, Tamminga C, Levinson D, Urban A. Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia. Nature Neuroscience 2021, 24: 186-196. PMID: 33432196, PMCID: PMC8806165, DOI: 10.1038/s41593-020-00767-4.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAdultCation Transport ProteinsEmbryonic DevelopmentFemaleGenomeHeLa CellsHigh-Throughput Nucleotide SequencingHumansLong Interspersed Nucleotide ElementsMachine LearningMental DisordersMutagenesis, InsertionalNeurogliaNeuronsPregnancyRetroelementsSchizophreniaConceptsBrain developmentPossible pathological effectsAnatomical distributionBilateral distributionHuman neuronsNervous systemHuman nervous systemNeuropsychiatric diseasesNeuropsychiatric disordersGliaPathological effectsNeuronsSomatic L1 insertionsWhole-genome sequencingHuman brainSomatic retrotransposition
2019
17 MACHINE LEARNING REVEALS BILATERAL DISTRIBUTION OF SOMATIC L1 INSERTIONS IN HUMAN NEURONS AND GLIA
Zhu X, Zhou B, Pattni R, Gleason K, Tan C, Kalinowski A, Sloan S, Fiston-Lavier A, Mariani J, Vogel H, Moran J, Vaccarino F, Tamminga C, Levinson D, Urban A. 17 MACHINE LEARNING REVEALS BILATERAL DISTRIBUTION OF SOMATIC L1 INSERTIONS IN HUMAN NEURONS AND GLIA. European Neuropsychopharmacology 2019, 29: s68. DOI: 10.1016/j.euroneuro.2019.07.158.Peer-Reviewed Original Research
2012
Modeling human cortical development in vitro using induced pluripotent stem cells
Mariani J, Simonini MV, Palejev D, Tomasini L, Coppola G, Szekely AM, Horvath TL, Vaccarino FM. Modeling human cortical development in vitro using induced pluripotent stem cells. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 12770-12775. PMID: 22761314, PMCID: PMC3411972, DOI: 10.1073/pnas.1202944109.Peer-Reviewed Original ResearchConceptsHuman brain developmentHuman induced pluripotent stem cellsLayer-specific cortical neuronsBrain developmentHuman cerebral cortexHuman cortical developmentStem cellsPluripotent stem cellsCerebral cortexCortical neuronsCortical developmentCNS regionsRadial gliaCortical wallDorsal telencephalonEmbryonic telencephalonGene expression profilesInduced pluripotent stem cellsIntermediate progenitorsTelencephalic developmentTelencephalonExpression profilesTranscriptional programsCellsGlia
2006
Midline radial glia translocation and corpus callosum formation require FGF signaling
Smith KM, Ohkubo Y, Maragnoli ME, Rašin M, Schwartz ML, Šestan N, Vaccarino FM. Midline radial glia translocation and corpus callosum formation require FGF signaling. Nature Neuroscience 2006, 9: 787-797. PMID: 16715082, DOI: 10.1038/nn1705.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAstrocytesCell MovementCell ShapeCerebral CortexCorpus CallosumDown-RegulationFemaleFibroblast Growth Factor 8Fibroblast Growth FactorsGrowth ConesMaleMiceMice, KnockoutMice, TransgenicNeurogliaReceptor, Fibroblast Growth Factor, Type 1Receptor, Fibroblast Growth Factor, Type 2RNA InterferenceSignal TransductionConceptsRadial glial cellsGlial cellsSomal translocationRadial gliaCorpus callosum formationReceptor 1 geneCallosal dysgenesisCerebral cortexFibroblast growth factor receptor 1 (FGFR1) geneIndusium griseumDorsomedial cortexDorsolateral cortexKnockout miceCortexAstrogliaApical endfeetFGFR1 geneAstrocytesGliaAxon guidanceDorsal midlinePrecise targetingCellsUnexpected roleFGF
1999
Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis
Vaccarino F, Schwartz M, Raballo R, Nilsen J, Rhee J, Zhou M, Doetschman T, Coffin J, Wyland J, Hung Y. Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis. Nature Neuroscience 1999, 2: 246-253. PMID: 10195217, DOI: 10.1038/6350.Peer-Reviewed Original ResearchConceptsPseudostratified ventricular epitheliumFibroblast growth factor-2Number of gliaAdult cerebral cortexEnd of neurogenesisCerebral cortex sizeFibroblast growth factorGrowth factor 2Cerebral cortexCerebral ventricleSingle microinjectionCortical neuronsBrdU studiesCortical progenitorsVentricular epitheliumCortex sizeGrowth factorRat embryosFGF2 geneEarly neurogenesisFGF receptorsFactor 2GliaNeurogenesisCell cycle length