2023
Adiponectin in the mammalian host influences ticks’ acquisition of the Lyme disease pathogen Borrelia
Tang X, Cao Y, Booth C, Arora G, Cui Y, Matias J, Fikrig E. Adiponectin in the mammalian host influences ticks’ acquisition of the Lyme disease pathogen Borrelia. PLOS Biology 2023, 21: e3002331. PMID: 37862360, PMCID: PMC10619873, DOI: 10.1371/journal.pbio.3002331.Peer-Reviewed Original ResearchConceptsAdipocyte-derived hormoneBite siteAdiponectin-deficient miceInfiltration of neutrophilsTick bite sitePro-inflammatory responseWild-type animalsIxodes scapularis ticksIL-1βVascular leakageHistamine releaseTick biteAdiponectinInfectious diseasesLyme disease agentBlood feeding arthropodsBorrelia burgdorferiScapularis ticksAnimal infectious diseasesBlood feedingB. burgdorferi survivalHuman bloodHormonePathogen acquisitionMammalian hostsDevelopment of an mRNA-lipid nanoparticle vaccine against Lyme disease
Pine M, Arora G, Hart T, Bettini E, Gaudette B, Muramatsu H, Tombácz I, Kambayashi T, Tam Y, Brisson D, Allman D, Locci M, Weissman D, Fikrig E, Pardi N. Development of an mRNA-lipid nanoparticle vaccine against Lyme disease. Molecular Therapy 2023, 31: 2702-2714. PMID: 37533256, PMCID: PMC10492027, DOI: 10.1016/j.ymthe.2023.07.022.Peer-Reviewed Original ResearchConceptsLyme diseaseImmune responseCell-mediated immune responsesLyme disease vaccinePotent immune responsesProtein subunit vaccinesSARS-CoV-2Surface protein AVector-borne infectious diseasesMRNA-LNP vaccineOuter surface protein ASingle immunizationProtective efficacyMRNA vaccinesClinical vaccinesDisease vaccineNanoparticle vaccineSubunit vaccineVaccine developmentVaccineBacterial infectionsMRNA-LNPInfectious diseasesDiseaseMRNA platform
2021
mRNA vaccination induces tick resistance and prevents transmission of the Lyme disease agent
Sajid A, Matias J, Arora G, Kurokawa C, DePonte K, Tang X, Lynn G, Wu MJ, Pal U, Strank NO, Pardi N, Narasimhan S, Weissman D, Fikrig E. mRNA vaccination induces tick resistance and prevents transmission of the Lyme disease agent. Science Translational Medicine 2021, 13: eabj9827. PMID: 34788080, DOI: 10.1126/scitranslmed.abj9827.Peer-Reviewed Original ResearchConceptsTick-borne infectionsTick-borne infectious diseaseEngorgement weightDisease agentsTicksTick exposureLyme disease agentGuinea pigsTick biteNormal blood mealBlood mealNucleoside-modified mRNALyme diseasePigsLocal rednessMRNA vaccinationMRNA vaccinesBite siteSalivary proteinsPrevents transmissionInfectious diseasesDiseaseVaccineResistanceEffective inductionProbing an Ixodes ricinus salivary gland yeast surface display with tick-exposed human sera to identify novel candidates for an anti-tick vaccine
Trentelman JJA, Tomás-Cortázar J, Knorr S, Barriales D, Hajdusek O, Sima R, Ersoz JI, Narasimhan S, Fikrig E, Nijhof AM, Anguita J, Hovius JW. Probing an Ixodes ricinus salivary gland yeast surface display with tick-exposed human sera to identify novel candidates for an anti-tick vaccine. Scientific Reports 2021, 11: 15745. PMID: 34344917, PMCID: PMC8333314, DOI: 10.1038/s41598-021-92538-9.Peer-Reviewed Original ResearchConceptsTick salivary gland proteinsLyme borreliosisVaccination studiesTick biteTick-borne encephalitis virusB. burgdorferi transmissionMultiple tick bitesYeast surface display libraryHuman infectious diseasesImmunization of rabbitsVaccination platformAnti-tick effectsAnti-tick vaccinesEncephalitis virusImmunodominant antigensInfectious diseasesNon-natural hostsTick immunityTick feedingImmunityBorreliosisBiteVaccineAntigenHuman serum
2014
Antivirulence Properties of an Antifreeze Protein
Heisig M, Abraham NM, Liu L, Neelakanta G, Mattessich S, Sultana H, Shang Z, Ansari JM, Killiam C, Walker W, Cooley L, Flavell RA, Agaisse H, Fikrig E. Antivirulence Properties of an Antifreeze Protein. Cell Reports 2014, 9: 417-424. PMID: 25373896, PMCID: PMC4223805, DOI: 10.1016/j.celrep.2014.09.034.Peer-Reviewed Original ResearchConceptsAntifreeze proteinsDiverse bacteriaProtein bindsWild-type animalsBiofilm formationAntivirulence agentsIAFGPMethicillin-resistant Staphylococcus aureusHost controlProteinAntifreeze glycoproteinsIxodes scapularisAntivirulence propertiesBacteriaSeptic shockTherapeutic strategiesBacterial infectionsInfectious diseasesMicrobesStaphylococcus aureusFliesBindsInfectionCatheter tubingPathogens
2012
Receptor interacting protein-2 contributes to host defense against Anaplasma phagocytophilum infection
Sukumaran B, Ogura Y, Pedra JH, Kobayashi KS, Flavell RA, Fikrig E. Receptor interacting protein-2 contributes to host defense against Anaplasma phagocytophilum infection. Pathogens And Disease 2012, 66: 211-219. PMID: 22747758, PMCID: PMC3530031, DOI: 10.1111/j.1574-695x.2012.01001.x.Peer-Reviewed Original ResearchConceptsRip2-deficient miceHuman granulocytic anaplasmosisNOD-like receptorsPhagocytophilum infectionTick-borne infectious diseaseNOD1/NOD2Obligate intracellular bacterium Anaplasma phagocytophilumInflammatory protein-2Host immune responseInnate immune pathwaysProtein 2Anaplasma phagocytophilum infectionHuman primary neutrophilsBacterium Anaplasma phagocytophilumHigh bacterial loadWild-type controlsImmune controlIL-12Immune clearanceImmune responseImmune pathwaysHost responseKC responsesHost defenseInfectious diseases
2011
An In Vivo Transfection Approach Elucidates a Role for Aedes aegypti Thioester-Containing Proteins in Flaviviral Infection
Cheng G, Liu L, Wang P, Zhang Y, Zhao YO, Colpitts TM, Feitosa F, Anderson JF, Fikrig E. An In Vivo Transfection Approach Elucidates a Role for Aedes aegypti Thioester-Containing Proteins in Flaviviral Infection. PLOS ONE 2011, 6: e22786. PMID: 21818390, PMCID: PMC3144946, DOI: 10.1371/journal.pone.0022786.Peer-Reviewed Original Research
2007
IL-12/23p40-dependent clearance of Anaplasma phagocytophilum in the murine model of human anaplasmosis
Pedra JH, Tao J, Sutterwala FS, Sukumaran B, Berliner N, Bockenstedt LK, Flavell RA, Yin Z, Fikrig E. IL-12/23p40-dependent clearance of Anaplasma phagocytophilum in the murine model of human anaplasmosis. Pathogens And Disease 2007, 50: 401-410. PMID: 17521390, DOI: 10.1111/j.1574-695x.2007.00270.x.Peer-Reviewed Original ResearchConceptsIL-12/23p40Deficient miceT cellsImmune responseHuman anaplasmosisTh1 immune responseIFN-gamma productionDay 6 postinfectionAnaplasma phagocytophilumA. phagocytophilum burdenIL-23Dendritic cellsIL-12Neutrophil numbersIFN-gammaMurine modelMicrobial agonistsPathogen clearanceDependent clearanceInfectious diseasesEarly susceptibilityPathogen eliminationCausative agentA. phagocytophilumIndependent mechanisms
2004
Disruption of Ixodes scapularis anticoagulation by using RNA interference
Narasimhan S, Montgomery RR, DePonte K, Tschudi C, Marcantonio N, Anderson JF, Sauer JR, Cappello M, Kantor FS, Fikrig E. Disruption of Ixodes scapularis anticoagulation by using RNA interference. Proceedings Of The National Academy Of Sciences Of The United States Of America 2004, 101: 1141-1146. PMID: 14745044, PMCID: PMC337020, DOI: 10.1073/pnas.0307669100.Peer-Reviewed Original ResearchConceptsAnti-factor Xa activityNumerous infectious diseasesIxodes scapularis ticksRNA interferenceMultiple anticoagulantsReduction of mRNAXa activityVaccine candidatesInfectious diseasesTick salivaAnticoagulantsBabesia microtiPhysiologic functionI. scapularis salivaSalivary glandsBorrelia burgdorferiTick feedingScapularis ticksAnticoagulant activityAnaplasma phagocytophilumTick engorgementSuch interventionsEngorgement weightEngorgementKey target