2022
The nucleoporin Gle1 activates DEAD-box protein 5 (Dbp5) by promoting ATP binding and accelerating rate limiting phosphate release
Gray S, Cao W, Montpetit B, De La Cruz EM. The nucleoporin Gle1 activates DEAD-box protein 5 (Dbp5) by promoting ATP binding and accelerating rate limiting phosphate release. Nucleic Acids Research 2022, 50: 3998-4011. PMID: 35286399, PMCID: PMC9023272, DOI: 10.1093/nar/gkac164.Peer-Reviewed Original ResearchConceptsNuclear pore complexRNA exportDEAD-box protein Dbp5ATPase cycleDbp5's ATPase activityDEAD (Asp-Glu-Ala-Asp) box protein 5Pore complexDbp5ATP bindingATPase cyclingNucleotide stateCytoplasmic faceGle1Pool of ATPADP-PiGene expressionProtein 5Mechanistic understandingNucleoporinsNup159ATPase activityATP dissociationATPPi releasePi release rate
2018
Insights into the Cooperative Nature of ATP Hydrolysis in Actin Filaments
Katkar HH, Davtyan A, Durumeric AEP, Hocky GM, Schramm AC, De La Cruz EM, Voth GA. Insights into the Cooperative Nature of ATP Hydrolysis in Actin Filaments. Biophysical Journal 2018, 115: 1589-1602. PMID: 30249402, PMCID: PMC6260209, DOI: 10.1016/j.bpj.2018.08.034.Peer-Reviewed Original ResearchActin CytoskeletonActinsAdenosine DiphosphateAdenosine TriphosphateHumansHydrolysisKineticsPhosphatesNup159 Weakens Gle1 Binding to Dbp5 But Does Not Accelerate ADP Release
Wong EV, Gray S, Cao W, Montpetit R, Montpetit B, De La Cruz EM. Nup159 Weakens Gle1 Binding to Dbp5 But Does Not Accelerate ADP Release. Journal Of Molecular Biology 2018, 430: 2080-2095. PMID: 29782832, PMCID: PMC6003625, DOI: 10.1016/j.jmb.2018.05.025.Peer-Reviewed Original ResearchConceptsEssential DEAD-box proteinADP releaseDbp5's ATPase activityDEAD-box proteinsNucleotide exchange factorsDbp5 activityMRNA exportRNA metabolismExchange factorDbp5Cellular processesATPase cyclingNup159Gle1ATP affinityMechanochemical cycleATPase activityADPATP releaseDDX19NTPasesNucleoporinsDetailed characterizationRNARegulator
2013
Molecular Basis of Purinergic Signal Metabolism by Ectonucleotide Pyrophosphatase/Phosphodiesterases 4 and 1 and Implications in Stroke*♦
Albright RA, Ornstein DL, Cao W, Chang WC, Robert D, Tehan M, Hoyer D, Liu L, Stabach P, Yang G, De La Cruz EM, Braddock DT. Molecular Basis of Purinergic Signal Metabolism by Ectonucleotide Pyrophosphatase/Phosphodiesterases 4 and 1 and Implications in Stroke*♦. Journal Of Biological Chemistry 2013, 289: 3294-3306. PMID: 24338010, PMCID: PMC3916532, DOI: 10.1074/jbc.m113.505867.Peer-Reviewed Original ResearchConceptsExtracellular membrane proteinsMembrane proteinsSubstrate specificityMolecular basisHigh-resolution crystal structuresResolution crystal structureComparative structural analysisATP hydrolysisNPP1Brain vascular endotheliumCorresponding regionTerminal phosphateLow nanomolar concentrationsPurinergic signalsPlatelet aggregationProteinATPEnzymeNanomolar concentrationsVascular endotheliumPhosphodiesterases 4Ap3AMetabolismSurface of chondrocytesTissue mineralization
2012
ATP Utilization and RNA Conformational Rearrangement by DEAD-Box Proteins
Henn A, Bradley MJ, De La Cruz EM. ATP Utilization and RNA Conformational Rearrangement by DEAD-Box Proteins. Annual Review Of Biophysics 2012, 41: 247-267. PMID: 22404686, PMCID: PMC7761782, DOI: 10.1146/annurev-biophys-050511-102243.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsDEAD-box RNA HelicasesHumansKineticsMolecular Motor ProteinsNucleic Acid ConformationRNAThermodynamicsConceptsDEAD-box proteinsNucleotide-dependent interactionRegulatory partner proteinsMolecular motor proteinsMolecular motor functionPartner proteinsRNA helicasesHelicase coreRNA helicaseRNA metabolismVivo foldingATP bindingDBP functionMotor proteinsCellular RNARNA structureQuantitative mechanistic understandingConformational rearrangementsBiophysical investigationsEnzymatic adaptationLarge familyMechanistic understandingProteinRNAAuxiliary domainChapter Two Analyzing ATP Utilization by DEAD-Box RNA Helicases Using Kinetic and Equilibrium Methods
Bradley MJ, De La Cruz EM. Chapter Two Analyzing ATP Utilization by DEAD-Box RNA Helicases Using Kinetic and Equilibrium Methods. Methods In Enzymology 2012, 511: 29-63. PMID: 22713314, PMCID: PMC7768905, DOI: 10.1016/b978-0-12-396546-2.00002-4.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateDEAD-box RNA HelicasesKineticsRNA StabilityTemperatureThermodynamicsConceptsDEAD-box RNA helicasesProduct release rate constantsEscherichia coli DbpAATP utilizationSteady-state ATPase activityRNA unwindingRNA helicasesATP bindingPreferred kinetic pathwayDsRNA unwindingConformational rearrangementsATPase activityRNAUnwindingCombination of equilibriumMss116HelicasesDbpAChapter TwoSubstrate propertiesSolution conditionsPathwayBindingKinetic pathwaysRearrangement
2011
Direct Observation of the Myosin Va Recovery Stroke That Contributes to Unidirectional Stepping along Actin
Shiroguchi K, Chin HF, Hannemann DE, Muneyuki E, De La Cruz EM, Kinosita K. Direct Observation of the Myosin Va Recovery Stroke That Contributes to Unidirectional Stepping along Actin. PLOS Biology 2011, 9: e1001031. PMID: 21532738, PMCID: PMC3075224, DOI: 10.1371/journal.pbio.1001031.Peer-Reviewed Original Research
2010
Pathway of ATP utilization and duplex rRNA unwinding by the DEAD-box helicase, DbpA
Henn A, Cao W, Licciardello N, Heitkamp SE, Hackney DD, De La Cruz EM. Pathway of ATP utilization and duplex rRNA unwinding by the DEAD-box helicase, DbpA. Proceedings Of The National Academy Of Sciences Of The United States Of America 2010, 107: 4046-4050. PMID: 20160110, PMCID: PMC2840157, DOI: 10.1073/pnas.0913081107.Peer-Reviewed Original Research
2008
Effects of Solution Crowding on Actin Polymerization Reveal the Energetic Basis for Nucleotide-Dependent Filament Stability
Frederick KB, Sept D, De La Cruz EM. Effects of Solution Crowding on Actin Polymerization Reveal the Energetic Basis for Nucleotide-Dependent Filament Stability. Journal Of Molecular Biology 2008, 378: 540-550. PMID: 18374941, PMCID: PMC2424216, DOI: 10.1016/j.jmb.2008.02.022.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonAdenosine DiphosphateAdenosine TriphosphateHydrolysisSolutionsSurface PropertiesThermodynamicsConceptsADP-actin filamentsFilament stabilityCell structure maintenanceFundamental cellular processesADP-actinADP-F-actinSolution crowdingCellular processesAllosteric regulatorsMolecular basisRegulatory proteinsActin polymerizationATP hydrolysisActin activityNucleotide hydrolysisFilament subunitsEnergetic basisIntracellular conditionsStructure maintenanceSubunit dissociationStability of ATPATPConcentration-dependent mannerStructural differencesForce generation
2007
The ATPase Cycle Mechanism of the DEAD-box rRNA Helicase, DbpA
Henn A, Cao W, Hackney DD, De La Cruz EM. The ATPase Cycle Mechanism of the DEAD-box rRNA Helicase, DbpA. Journal Of Molecular Biology 2007, 377: 193-205. PMID: 18237742, PMCID: PMC2359651, DOI: 10.1016/j.jmb.2007.12.046.Peer-Reviewed Original Research
2006
The Tail Domain of Myosin Va Modulates Actin Binding to One Head
Olivares AO, Chang W, Mooseker MS, Hackney DD, De La Cruz EM. The Tail Domain of Myosin Va Modulates Actin Binding to One Head. Journal Of Biological Chemistry 2006, 281: 31326-31336. PMID: 16921171, DOI: 10.1074/jbc.m603898200.Peer-Reviewed Original Research
2005
Thymosin β4 Induces a Conformational Change in Actin Monomers
Dedova IV, Nikolaeva OP, Safer D, De La Cruz EM, dos Remedios CG. Thymosin β4 Induces a Conformational Change in Actin Monomers. Biophysical Journal 2005, 90: 985-992. PMID: 16272441, PMCID: PMC1367123, DOI: 10.1529/biophysj.105.063081.Peer-Reviewed Original ResearchAcrylamideActinsAdenosine TriphosphateAnimalsCalorimetry, Differential ScanningCysteineElectrophoresis, Polyacrylamide GelFluorescence Resonance Energy TransferHot TemperatureKineticsLysineModels, MolecularMolecular ConformationNucleotidesProtein BindingProtein ConformationProtein Structure, TertiaryPurinesRabbitsSolventsSpectrometry, FluorescenceTemperatureThymosinHolding the reins on Myosin V
Olivares AO, De La Cruz EM. Holding the reins on Myosin V. Proceedings Of The National Academy Of Sciences Of The United States Of America 2005, 102: 13719-13720. PMID: 16172373, PMCID: PMC1236595, DOI: 10.1073/pnas.0507068102.Peer-Reviewed Original ResearchThermodynamics of Nucleotide Binding to Actomyosin V and VI: A Positive Heat Capacity Change Accompanies Strong ADP Binding †
Robblee JP, Cao W, Henn A, Hannemann DE, De La Cruz EM. Thermodynamics of Nucleotide Binding to Actomyosin V and VI: A Positive Heat Capacity Change Accompanies Strong ADP Binding †. Biochemistry 2005, 44: 10238-10249. PMID: 16042401, DOI: 10.1021/bi050232g.Peer-Reviewed Original Research
2004
Mechanochemical coupling of two substeps in a single myosin V motor
Uemura S, Higuchi H, Olivares AO, De La Cruz EM, Ishiwata S. Mechanochemical coupling of two substeps in a single myosin V motor. Nature Structural & Molecular Biology 2004, 11: 877-883. PMID: 15286720, DOI: 10.1038/nsmb806.Peer-Reviewed Original ResearchMechanism of Nucleotide Binding to Actomyosin VI EVIDENCE FOR ALLOSTERIC HEAD-HEAD COMMUNICATION*
Robblee JP, Olivares AO, De La Cruz EM. Mechanism of Nucleotide Binding to Actomyosin VI EVIDENCE FOR ALLOSTERIC HEAD-HEAD COMMUNICATION*. Journal Of Biological Chemistry 2004, 279: 38608-38617. PMID: 15247304, DOI: 10.1074/jbc.m403504200.Peer-Reviewed Original ResearchActinsActomyosinAdenosine DiphosphateAdenosine TriphosphatasesAdenosine TriphosphateAllosteric SiteAnimalsCell LineDose-Response Relationship, DrugHydrogen-Ion ConcentrationInsectaKineticsModels, BiologicalModels, ChemicalModels, StatisticalMuscle, SkeletalMyosin Heavy ChainsNucleotidesProtein BindingPyrenesRabbitsTime Factors
2002
Kinetic Characterization of the Weak Binding States of Myosin V †
Yengo CM, De La Cruz EM, Safer D, Ostap EM, Sweeney HL. Kinetic Characterization of the Weak Binding States of Myosin V †. Biochemistry 2002, 41: 8508-8517. PMID: 12081502, DOI: 10.1021/bi015969u.Peer-Reviewed Original Research
2001
Structural biology. Actin' up.
De La Cruz E, Pollard T. Structural biology. Actin' up. Science 2001, 293: 616-8. PMID: 11474090, DOI: 10.1126/science.1063558.Peer-Reviewed Original ResearchActin Depolymerizing FactorsActinsAdenosine DiphosphateAdenosine TriphosphateBiopolymersContractile ProteinsCrystallography, X-RayHydrolysisMicrofilament ProteinsPhosphatesProfilinsProtein BindingProtein ConformationProtein Structure, SecondaryProtein Structure, TertiaryProtein SubunitsRhodaminesThymosinKinetic Mechanism and Regulation of Myosin VI*
De La Cruz E, Ostap E, Sweeney H. Kinetic Mechanism and Regulation of Myosin VI*. Journal Of Biological Chemistry 2001, 276: 32373-32381. PMID: 11423557, DOI: 10.1074/jbc.m104136200.Peer-Reviewed Original ResearchConceptsHeavy chain phosphorylationMyosin VIPhysiological nucleotide concentrationsADP releaseHigh duty ratio motorMolecular basisUnique adaptationsActin filamentsATP bindsATPase cycleNative dimerRate-limiting stepDetailed kinetic analysisChain phosphorylationRegulationNucleotide concentrationsDiffusional encounterMyosinLow affinityMutantsProcessivityKinetic analysisPhosphorylationActinBinds
2000
Actin and Light Chain Isoform Dependence of Myosin V Kinetics †
De La Cruz E, Wells A, Sweeney H, Ostap E. Actin and Light Chain Isoform Dependence of Myosin V Kinetics †. Biochemistry 2000, 39: 14196-14202. PMID: 11087368, DOI: 10.1021/bi001701b.Peer-Reviewed Original Research