2020
Inefficient thermogenic mitochondrial respiration due to futile proton leak in a mouse model of fragile X syndrome
Griffiths KK, Wang A, Wang L, Tracey M, Kleiner G, Quinzii CM, Sun L, Yang G, Perez‐Zoghbi J, Licznerski P, Yang M, Jonas EA, Levy RJ. Inefficient thermogenic mitochondrial respiration due to futile proton leak in a mouse model of fragile X syndrome. The FASEB Journal 2020, 34: 7404-7426. PMID: 32307754, PMCID: PMC7692004, DOI: 10.1096/fj.202000283rr.Peer-Reviewed Original ResearchConceptsFragile X syndromeProton leakMental retardation protein (FMRP) expressionInefficient oxidative phosphorylationX syndromeCoenzyme Q deficiencyThermogenic respirationMitochondrial CoQTranscriptional silencingFMRP deficiencyFmr1 knockout miceQ deficiencyDysfunctional mitochondriaFMR1 geneFXS phenotypeOxidative phosphorylationMitochondrial respirationCommon genetic causeProtein synthesisFull mutationKey phenotypicPeak of synaptogenesisMitochondriaProtein expressionGenetic cause
2017
Neuronal Death After Hemorrhagic Stroke In Vitro and In Vivo Shares Features of Ferroptosis and Necroptosis
Zille M, Karuppagounder SS, Chen Y, Gough PJ, Bertin J, Finger J, Milner TA, Jonas EA, Ratan RR. Neuronal Death After Hemorrhagic Stroke In Vitro and In Vivo Shares Features of Ferroptosis and Necroptosis. Stroke 2017, 48: 1033-1043. PMID: 28250197, PMCID: PMC5613764, DOI: 10.1161/strokeaha.116.015609.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisCells, CulturedCerebral HemorrhageDisease Models, AnimalHeminHemoglobinsMaleMiceMice, Inbred C57BLNecrosisNeuronsConceptsCell death mechanismsCaspase-dependent apoptosisDeath mechanismsMolecular markersChemical inhibitorsCell death pathwaysNecroptotic cell deathSecondary injuryNecroptotic signalingDeath pathwaysNecrotic phenotypeIntracerebral hemorrhageCell deathMRNA synthesisNecroptosisIntracerebral hemorrhage (ICH) resultsShare featuresFerroptosisHemin-induced toxicityFerroptosis inhibitorsAutophagyCultured neuronsApoptosisHemorrhage resultsNeuronal necrosis
2003
BAK Alters Neuronal Excitability and Can Switch from Anti- to Pro-Death Function during Postnatal Development
Fannjiang Y, Kim CH, Huganir RL, Zou S, Lindsten T, Thompson CB, Mito T, Traystman RJ, Larsen T, Griffin DE, Mandir AS, Dawson TM, Dike S, Sappington AL, Kerr DA, Jonas EA, Kaczmarek LK, Hardwick JM. BAK Alters Neuronal Excitability and Can Switch from Anti- to Pro-Death Function during Postnatal Development. Developmental Cell 2003, 4: 575-585. PMID: 12689595, DOI: 10.1016/s1534-5807(03)00091-1.Peer-Reviewed Original ResearchMeSH KeywordsAge FactorsAnimalsAnimals, NewbornApoptosisBcl-2 Homologous Antagonist-Killer ProteinCentral Nervous SystemCentral Nervous System DiseasesCentral Nervous System Viral DiseasesDisease Models, AnimalEpilepsyExcitatory Postsynaptic PotentialsGenetic VectorsHippocampusKainic AcidMaleMembrane ProteinsMiceMice, KnockoutNeurodegenerative DiseasesNeuronsNeurotoxinsProtein Structure, TertiarySindbis VirusStrokeSynaptic TransmissionConceptsNeuronal excitabilityVirus infectionPostnatal developmentAlters neuronal excitabilityKainate-induced seizuresSpinal cord neuronsIschemia/strokeSindbis virus infectionNeuronal injuryCord neuronsNeuronal deathProtective effectSynaptic activityMouse modelParkinson's diseaseNeuron subtypesNeurotransmitter releasePro-death functionMiceNeuronsSpecific death stimuliDeathSeizuresPossible roleExcitability