2000
Methanococcus jannaschii Prolyl-Cysteinyl-tRNA Synthetase Possesses Overlapping Amino Acid Binding Sites †
Stathopoulos C, Jacquin-Becker C, Becker H, Li T, Ambrogelly A, Longman R, Söll D. Methanococcus jannaschii Prolyl-Cysteinyl-tRNA Synthetase Possesses Overlapping Amino Acid Binding Sites †. Biochemistry 2000, 40: 46-52. PMID: 11141055, DOI: 10.1021/bi002108x.Peer-Reviewed Original ResearchConceptsAmino acidsTRNA synthetaseProtein translation apparatusCysteinyl-tRNA synthetase activityCognate tRNA speciesSite-directed mutagenesisAmino acid activationAbsence of tRNAAmino acid residuesSynthetase activityTranslation apparatusMethanococcus jannaschiiTRNA speciesCysteine activationUnusual enzymeDifferent amino acidsMutant enzymesCysteine bindingProline bindingProlyl-tRNA synthetase activityAcid residuesAminoacyl-tRNAPosition 103Single enzymeAncient Adaptation of the Active Site of Tryptophanyl-tRNA Synthetase for Tryptophan Binding †
Ibba M, Stange-Thomann N, Kitabatake M, Ali K, Söll I, Carter, C, Michael Ibba, and, Söll D. Ancient Adaptation of the Active Site of Tryptophanyl-tRNA Synthetase for Tryptophan Binding †. Biochemistry 2000, 39: 13136-13143. PMID: 11052665, DOI: 10.1021/bi001512t.Peer-Reviewed Original ResearchMeSH KeywordsAcylationAnimalsBacillus subtilisBacterial ProteinsBinding SitesCattleDiphosphatesDNA Mutational AnalysisDNA, BacterialEvolution, MolecularGeobacillus stearothermophilusHumansKineticsMiceMutagenesis, Site-DirectedProtein BindingRabbitsRNA, Transfer, TrpSequence Homology, Amino AcidTryptophanTryptophan-tRNA LigaseTyrosineConceptsAmino acid specificityActive site residuesTyrosyl-tRNA synthetasesTryptophanyl-tRNA synthetaseAncient adaptationAnalogous residuesGlu side chainsTryptophan replacementHomologous positionsSystematic mutationAromatic side chainsTrpRSTryptophan recognitionBacillus stearothermophilusSide chainsTryptophan bindingTyrRSResiduesCommon originCompetitive inhibitorMutationsTrp bindingMechanistic supportCatalytic efficiencyActive site
1998
Glutamyl-tRNAGln amidotransferase in Deinococcus radiodurans may be confined to asparagine biosynthesis
Curnow A, Tumbula D, Pelaschier J, Min B, Söll D. Glutamyl-tRNAGln amidotransferase in Deinococcus radiodurans may be confined to asparagine biosynthesis. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 12838-12843. PMID: 9789001, PMCID: PMC23620, DOI: 10.1073/pnas.95.22.12838.Peer-Reviewed Original ResearchConceptsDeinococcus radioduransD. radiodurans genomeRadiation-resistant bacterium Deinococcus radioduransBiosynthesis of asparagineGlutaminyl-tRNA synthetaseGlutamyl-tRNA synthetaseBacterium Deinococcus radioduransPresence of AsnRSAsparaginyl-tRNA synthetaseAspartyl-tRNA synthetaseAsn-tRNAAsparagine biosynthesisAsparaginyl-tRNAGenomic sequencesGln-tRNAAsparagine synthetaseBiochemical experimentsTransamidation activityGlutaminyl-tRNAProtein synthesisSingle enzymeSynthetaseRadioduransBiosynthesisGenes
1997
A Euryarchaeal Lysyl-tRNA Synthetase: Resemblance to Class I Synthetases
Ibba M, Morgan S, Curnow A, Pridmore D, Vothknecht U, Gardner W, Lin W, Woese C, Söll D. A Euryarchaeal Lysyl-tRNA Synthetase: Resemblance to Class I Synthetases. Science 1997, 278: 1119-1122. PMID: 9353192, DOI: 10.1126/science.278.5340.1119.Peer-Reviewed Original ResearchConceptsClass I aminoacyl-tRNA synthetaseCrenarchaeote Sulfolobus solfataricusDinucleotide-binding domainAminoacyl-tRNA synthetasesAmino acid motifsAmino acid sequenceAminoacyl-tRNA synthetaseLysyl-tRNA synthetaseClass II synthetasesEuryarchaeal genomesUnassigned functionMethanococcus jannaschiiMethanococcus maripaludisLysRS proteinsReading frameSulfolobus solfataricusAcid motifAcid sequenceSuch organismsMethanobacterium thermoautotrophicumLysRSProteinSynthetasesSynthetaseRNA synthetaseGlutamyl-tRNA sythetase.
Freist W, Gauss D, Söll D, Lapointe J. Glutamyl-tRNA sythetase. Biological Chemistry 1997, 378: 1313-29. PMID: 9426192.Peer-Reviewed Original ResearchConceptsGlutamyl-tRNA synthetaseGlutaminyl-tRNA synthetaseAminoacyl-tRNA synthetasesNegative eubacteriaBacterial glutamyl-tRNA synthetasesATP/PPiHigh molecular mass complexesClass I aminoacyl-tRNA synthetasesCytoplasm of eukaryotesE. coli GlnRSGlutamyl-tRNA synthetasesMolecular mass complexesN-terminal halfC-terminal halfAmino acid residuesDihydrouridine (DHU) armPhylogenetic studiesSpecific amidotransferaseGlutamyl-prolylMass complexesTRNA synthetasesCognate tRNAAcid residuesAcceptor stemSynthetasesGlu-tRNAGln amidotransferase: A novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation
Curnow A, Hong K, Yuan R, Kim S, Martins O, Winkler W, Henkin T, Söll D. Glu-tRNAGln amidotransferase: A novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proceedings Of The National Academy Of Sciences Of The United States Of America 1997, 94: 11819-11826. PMID: 9342321, PMCID: PMC23611, DOI: 10.1073/pnas.94.22.11819.Peer-Reviewed Original ResearchConceptsTranscriptional unitsGln-tRNAGlnGram-positive eubacteriaHeterotrimeric enzymeGlu-tRNAGlnTranslational apparatusHeterotrimeric proteinGlutamine codonB. subtilisAmidotransferaseSynthetase activityOnly pathwayEnzymeGlutamylEssential componentArchaeaTransamidationEubacteriaOperonCyanobacteriaGATCOrganellesCodonGenesGATA
1996
tRNA-dependent asparagine formation
Curnow A, Ibba M, Söll D. tRNA-dependent asparagine formation. Nature 1996, 382: 589-590. PMID: 8757127, DOI: 10.1038/382589b0.Peer-Reviewed Original Research
1995
A broadly applicable continuous spectrophotometric assay for measuring aminoacyl-tRNA synthetase activity
Lloyd A, Thomann H, Ibba M, Soöll D. A broadly applicable continuous spectrophotometric assay for measuring aminoacyl-tRNA synthetase activity. Nucleic Acids Research 1995, 23: 2886-2892. PMID: 7659511, PMCID: PMC307126, DOI: 10.1093/nar/23.15.2886.Peer-Reviewed Original ResearchDivergence of glutamate and glutamine aminoacylation pathways: Providing the evolutionary rationale for mischarging
Rogers K, Söll D. Divergence of glutamate and glutamine aminoacylation pathways: Providing the evolutionary rationale for mischarging. Journal Of Molecular Evolution 1995, 40: 476-481. PMID: 7783222, DOI: 10.1007/bf00166615.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetaseGlutamine tRNAEukaryotic organismsProkaryotic organismsGln-tRNAGlnHorizontal gene transfer eventsGene transfer eventsGlutaminyl-tRNA synthetasesGram-negative eubacteriaGlutamyl-tRNA synthetaseAminoacyl-tRNA synthetasesAminoacyl-tRNA synthetaseFamily of enzymesEukaryotic organellesPool of glutamateAminoacyl-tRNATRNADifferent cellular mechanismsEvolutionary rationaleProtein synthesisOrganismsAmino acidsTransfer eventsCellular mechanismsSynthetase
1994
Identity switches between tRNAs aminoacylated by class I glutaminyl- and class II aspartyl-tRNA synthetases.
Frugier M, Söll D, Giegé R, Florentz C. Identity switches between tRNAs aminoacylated by class I glutaminyl- and class II aspartyl-tRNA synthetases. Biochemistry 1994, 33: 9912-21. PMID: 8060999, DOI: 10.1021/bi00199a013.Peer-Reviewed Original ResearchConceptsAminoacyl-tRNA synthetasesIdentity nucleotidesHigh-resolution X-ray structuresAminoacyl-tRNA synthetase complexGlutaminyl-tRNA synthetaseAspartyl-tRNA synthetasesAspartyl-tRNA synthetaseGlutamine identityCognate tRNATRNA structureTRNA moleculesTRNAAminoacylation specificitySynthetase complexSpecific aminoacylationConformational changesSynthetasesEscherichia coliYeastSynthetaseNucleotidesE. coliX-ray structureComplex formationColiCoexpression of eukaryotic tRNASer and yeast seryl-tRNA synthetase leads to functional amber suppression in Escherichia coli
Weygand-Durasević I, Nalaskowska M, Söll D. Coexpression of eukaryotic tRNASer and yeast seryl-tRNA synthetase leads to functional amber suppression in Escherichia coli. Journal Of Bacteriology 1994, 176: 232-239. PMID: 8282701, PMCID: PMC205035, DOI: 10.1128/jb.176.1.232-239.1994.Peer-Reviewed Original ResearchConceptsSeryl-tRNA synthetaseYeast seryl-tRNA synthetaseEscherichia coliSerine tRNA geneE. coliConservation of determinantsTRNA genesSchizosaccharomyces pombePrimary transcriptPlasmid promoterAmber suppressionTRNA identityFunctional expressionColiCoexpressionSynthetasePombeGenesPromoterSuppressorTranscriptsOrganismsConservationExpressionEfficient suppression
1993
Acceptor stem and anticodon RNA hairpin helix interactions with glutamine tRNA synthetase
Wright D, Martinis S, Jahn M, Söll D, Schimmel P. Acceptor stem and anticodon RNA hairpin helix interactions with glutamine tRNA synthetase. Biochimie 1993, 75: 1041-1049. PMID: 8199240, DOI: 10.1016/0300-9084(93)90003-b.Peer-Reviewed Original Research
1990
Purification and characterization of Chlamydomonas reinhardtii chloroplast glutamyl-tRNA synthetase, a natural misacylating enzyme.
Chen M, Jahn D, Schön A, O'Neill G, Söll D. Purification and characterization of Chlamydomonas reinhardtii chloroplast glutamyl-tRNA synthetase, a natural misacylating enzyme. Journal Of Biological Chemistry 1990, 265: 4054-4057. PMID: 2303494, DOI: 10.1016/s0021-9258(19)39701-7.Peer-Reviewed Original ResearchConceptsGlutamyl-tRNA synthetaseChloroplast enzymeApparent molecular massSequential column chromatographyChlamydomonas reinhardtiiActive enzymeMolecular massNondenaturing conditionsEscherichia coliDenaturing conditionsAcceptor RNASynthetaseMono S.Mono QEnzymeTRNAReinhardtiiYeastColumn chromatographyRNACytoplasmicProteinBarleyColiReversed phase chromatography
1989
Structural Basis for Misaminoacylation by Mutant E. coli Glutaminyl-tRNA Synthetase Enzymes
Perona J, Swanson R, Rould M, Steitz T, Söll D. Structural Basis for Misaminoacylation by Mutant E. coli Glutaminyl-tRNA Synthetase Enzymes. Science 1989, 246: 1152-1154. PMID: 2686030, DOI: 10.1126/science.2686030.Peer-Reviewed Original Research
1988
Protein biosynthesis in organelles requires misaminoacylation of tRNA
Schön A, Kannangara C, Cough S, SÖll D. Protein biosynthesis in organelles requires misaminoacylation of tRNA. Nature 1988, 331: 187-190. PMID: 3340166, DOI: 10.1038/331187a0.Peer-Reviewed Original ResearchConceptsProtein biosynthesisOrigin of organellesCrude chloroplast extractAnimal mitochondriaRNA involvementSpecific amidotransferaseTRNA speciesConversion of glutamateBarley chloroplastsChloroplast extractsProtein synthesisTRNAOrganellesSpeciesChloroplastsAminoacylation studiesBiosynthesisAmide donorGlutamineGlnCyanobacteriaAmidotransferaseMisaminoacylationMitochondriaOrganismsEscherichia coli glutaminyl-tRNA synthetase: a single amino acid replacement relaxes rRNA specificity.
Uemura H, Conley J, Yamao F, Rogers J, Söll D. Escherichia coli glutaminyl-tRNA synthetase: a single amino acid replacement relaxes rRNA specificity. Protein Sequences And Data Analysis 1988, 1: 479-85. PMID: 2464170.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetaseTRNA bindingEscherichia coli glutaminyl-tRNA synthetaseExtensive homology searchesSingle amino acid replacementSingle amino acid changeRegion of homologyAminoacyl-tRNA synthetasesAmino acid replacementsAminoacyl adenylate formationAmino acids 235Amino acid changesLittle apparent similarityGlnS geneTRNA discriminationHomology searchGene productsAcid replacementsShare regionsDifferent tRNAsShort stretchesGenetic selectionAcid changesAsn changeHomology
1974
Isolation and Partial Characterization of a Temperature-Sensitive Escherichia coli Mutant with Altered Glutaminyl-Transfer Ribonucleic Acid Synthetase
Körner A, Magee B, Liska B, Low K, Adelberg E, Söll D. Isolation and Partial Characterization of a Temperature-Sensitive Escherichia coli Mutant with Altered Glutaminyl-Transfer Ribonucleic Acid Synthetase. Journal Of Bacteriology 1974, 120: 154-158. PMID: 4153616, PMCID: PMC245744, DOI: 10.1128/jb.120.1.154-158.1974.Peer-Reviewed Original Research
1972
Is There a Discriminator Site in Transfer RNA?
Crothers D, Seno T, Söll D. Is There a Discriminator Site in Transfer RNA? Proceedings Of The National Academy Of Sciences Of The United States Of America 1972, 69: 3063-3067. PMID: 4562753, PMCID: PMC389707, DOI: 10.1073/pnas.69.10.3063.Peer-Reviewed Original Research
1971
Temperature dependence of the aminoacylation of tRNA by bacillus stearothermophilus aminoacyl‐tRNA synthetases
Johnson L, Söll D. Temperature dependence of the aminoacylation of tRNA by bacillus stearothermophilus aminoacyl‐tRNA synthetases. Biopolymers 1971, 10: 2209-2221. PMID: 4940767, DOI: 10.1002/bip.360101114.Peer-Reviewed Original ResearchConceptsSpecific transfer RNAsTRNA-IleTransfer RNAThermal denaturation profilesB. stearothermophilusAminoacyl-tRNA synthetasesDenaturation profilesAminoacylation of tRNAAmino acid acceptor activityTRNA-ValAcceptor activityTRNATertiary structureMycoplasma spBacillus stearothermophilusEscherichia coliAminoacylation reactionStearothermophilusAminoacylationRNASpeciesIleSynthetasesNucleaseSynthetase preparationsIsolation and Partial Characterization of Temperature-Sensitive Escherichia coli Mutants with Altered Leucyl- and Seryl-Transfer Ribonucleic Acid Synthetases
Low B, Gates F, Goldstein T, Söll D. Isolation and Partial Characterization of Temperature-Sensitive Escherichia coli Mutants with Altered Leucyl- and Seryl-Transfer Ribonucleic Acid Synthetases. Journal Of Bacteriology 1971, 108: 742-750. PMID: 4942762, PMCID: PMC247134, DOI: 10.1128/jb.108.2.742-750.1971.Peer-Reviewed Original ResearchConceptsLeucyl-tRNA synthetaseTemperature-sensitive Escherichia coli mutantsCorresponding genetic lociEscherichia coli mutantsSeryl-tRNA synthetaseTemperature-sensitive mutantColi mutantsGenetic lociBranched-chain amino acidsEscherichia coliAmino acidsConditional growthSynthetaseMutantsPartial characterizationEnzyme