2020
Initiation of Protein Synthesis with Non‐Canonical Amino Acids In Vivo
Tharp J, Ad O, Amikura K, Ward F, Garcia E, Cate J, Schepartz A, Söll D. Initiation of Protein Synthesis with Non‐Canonical Amino Acids In Vivo. Angewandte Chemie 2020, 132: 3146-3150. DOI: 10.1002/ange.201914671.Peer-Reviewed Original ResearchNon-canonical amino acidsDistinct non-canonical amino acidsE. coli translational machineryAmino acidsNon-canonical initiationTRNA fMetTranslational machineryInitiator tRNASynthetic biologyE. coli strainsProtein synthesisDiverse sidechainsColi strainsFMetRemarkable versatilityVivoInitial stepSecond positionGenomeTyrRSTRNARedundant copiesMachineryBiologyPolypeptide
2011
Rational design of an evolutionary precursor of glutaminyl-tRNA synthetase
O’Donoghue P, Sheppard K, Nureki O, Söll D. Rational design of an evolutionary precursor of glutaminyl-tRNA synthetase. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 20485-20490. PMID: 22158897, PMCID: PMC3251134, DOI: 10.1073/pnas.1117294108.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAmino Acyl-tRNA SynthetasesBase SequenceCodonEscherichia coliEvolution, MolecularGenetic EngineeringKineticsMethanobacteriaceaeModels, MolecularMolecular ConformationMolecular Sequence DataNucleic Acid ConformationPhylogenyProtein Structure, SecondarySequence Homology, Amino AcidConceptsGlutaminyl-tRNA synthetaseAminoacyl-tRNA synthetasesGenetic code engineeringAmino acidsDomains of lifeMost aminoacyl-tRNA synthetasesGlutamyl-tRNA synthetaseCanonical amino acidsBacterial GlnRSTRNA specificityTRNA pairsParticular codonsEvolutionary precursorBiochemical characterizationStem loopGlnRAdditional codonsCAA codonCodonProtein synthesisCAG codonEscherichia coliSpecific enzymesCatalytic preferenceSynthetase
2008
Quality control despite mistranslation caused by an ambiguous genetic code
Ruan B, Palioura S, Sabina J, Marvin-Guy L, Kochhar S, LaRossa RA, Söll D. Quality control despite mistranslation caused by an ambiguous genetic code. Proceedings Of The National Academy Of Sciences Of The United States Of America 2008, 105: 16502-16507. PMID: 18946032, PMCID: PMC2575449, DOI: 10.1073/pnas.0809179105.Peer-Reviewed Original ResearchConceptsGenetic codeAa-tRNAWild-type proteinAminoacyl-tRNA synthetasesInactive mutant proteinsHeat shock responseE. coliMutant proteinsReporter proteinMissense suppressionFunctional proteinsCognate tRNASelective pressureAminoacyl-tRNAActive enzymeShock responseProtein synthesisNative conformationEnergetic costAmino acidsMissense mutationsProteinBiochemical evidenceCorrect pairingProtein qualityMammalian mitochondria have the innate ability to import tRNAs by a mechanism distinct from protein import
Rubio MA, Rinehart JJ, Krett B, Duvezin-Caubet S, Reichert AS, Söll D, Alfonzo JD. Mammalian mitochondria have the innate ability to import tRNAs by a mechanism distinct from protein import. Proceedings Of The National Academy Of Sciences Of The United States Of America 2008, 105: 9186-9191. PMID: 18587046, PMCID: PMC2453747, DOI: 10.1073/pnas.0804283105.Peer-Reviewed Original ResearchConceptsProtein importMammalian mitochondriaImport systemSubcellular RNA fractionsMitochondrial tRNA genesMitochondrial electrochemical gradientMitochondrial genomeTRNA genesTranscribed tRNAsHuman mitochondriaDefective mitochondriaProtein factorsFiber cellsHeterologous RNATRNACytosolic factorsSufficient ATPRNA fractionHuman cellsHuman diseasesProtein synthesisMitochondriaElectrochemical gradientOligonucleotide primersVitro system
2006
Saccharomyces cerevisiae imports the cytosolic pathway for Gln‐tRNA synthesis into the mitochondrion
Krett B, Rinehart J, Rubio M, Alfonzo J, Söll D. Saccharomyces cerevisiae imports the cytosolic pathway for Gln‐tRNA synthesis into the mitochondrion. The FASEB Journal 2006, 20: a500-a500. DOI: 10.1096/fasebj.20.4.a500-b.Peer-Reviewed Original ResearchTransamidation pathwayMitochondrial translationGln-tRNAOrganellar protein synthesisYeast mitochondrial DNAGlutaminyl-tRNA synthetaseAminoacyl-tRNA synthetasesAminoacyl-tRNA formationImport mechanismMitochondrial localizationMitochondrial DNAProtein biosynthesisMost bacteriaCytoplasmic componentsAlternate functionsCytosolic pathwayProtein synthesisAmino acidsEssential processMitochondriaTRNAPathwayEukaryotesGlnRArchaea
2001
A Single Amidotransferase Forms Asparaginyl-tRNA and Glutaminyl-tRNA in Chlamydia trachomatis *
Raczniak G, Becker H, Min B, Söll D. A Single Amidotransferase Forms Asparaginyl-tRNA and Glutaminyl-tRNA in Chlamydia trachomatis *. Journal Of Biological Chemistry 2001, 276: 45862-45867. PMID: 11585842, DOI: 10.1074/jbc.m109494200.Peer-Reviewed Original ResearchConceptsAsn-tRNAGln-tRNAAminoacyl-tRNAOperon-like arrangementAccurate protein synthesisGlutaminyl-tRNA synthetaseGlutamyl-tRNA synthetaseAminoacyl-tRNA synthetasesAsparaginyl-tRNA synthetaseAspartyl-tRNA synthetaseGat genesAsparaginyl-tRNAGenome sequenceMost bacteriaGlutaminyl-tRNAAmidotransferaseProtein synthesisSynthetasesSynthetaseGenesAmide donorEnzymeAspGluGenomeProtein synthesis: Twenty three amino acids and counting
Ibba M, Stathopoulos C, Söll D. Protein synthesis: Twenty three amino acids and counting. Current Biology 2001, 11: r563-r565. PMID: 11509255, DOI: 10.1016/s0960-9822(01)00344-x.Peer-Reviewed Original ResearchGenomics and the evolution of aminoacyl-tRNA synthesis.
Ruan B, Ahel I, Ambrogelly A, Becker H, Bunjun S, Feng L, Tumbula-Hansen D, Ibba M, Korencic D, Kobayashi H, Jacquin-Becker C, Mejlhede N, Min B, Raczniak G, Rinehart J, Stathopoulos C, Li T, Söll D. Genomics and the evolution of aminoacyl-tRNA synthesis. Acta Biochimica Polonica 2001, 48: 313-21. PMID: 11732603, DOI: 10.18388/abp.2001_3917.Peer-Reviewed Original ResearchConceptsAminoacyl-tRNA synthesisAminoacyl-tRNA synthetasesTransfer RNAsAmino acidsMessenger RNAGenetic informationContemporary aminoacyl-tRNA synthetasesDirect protein synthesisNon-canonical routesEvolutionary diversityEvolutionary divergenceCys-tRNANascent polypeptidesRibosome movesAsn-tRNAGln-tRNAWhole genomeAppropriate amino acidsTRNA anticodonSubstrate specificityLys-tRNATrinucleotide codonsNext codonUnexpected levelProtein synthesisThe renaissance of aminoacyl‐tRNA synthesis
Ibba M, Söll D. The renaissance of aminoacyl‐tRNA synthesis. EMBO Reports 2001, 2: 382-387. PMID: 11375928, PMCID: PMC1083889, DOI: 10.1093/embo-reports/kve095.Peer-Reviewed Original ResearchConceptsAminoacyl-tRNA synthesisProtein synthesisRole of tRNAEvolutionary diversityStructural biologyMolecular biologistsUnexpected arrayMolecular biologyNew enzymeDecades of studyAmino acidsEssential processTRNABiologyComplete pictureGenomicsAdaptorBiologistsDiversityEnzymePathwayHigh degreeSynthesisNumerous milestonesGenomics-based identification of targets in pathogenic bacteria for potential therapeutic and diagnostic use
Raczniak G, Ibba M, Söll D. Genomics-based identification of targets in pathogenic bacteria for potential therapeutic and diagnostic use. Toxicology 2001, 160: 181-189. PMID: 11246138, DOI: 10.1016/s0300-483x(00)00454-6.Peer-Reviewed Original ResearchConceptsComplete microbial genome sequencesMicrobial genome sequencesFundamental biological processesPathogen-specific pathwaysAminoacyl-tRNA synthesisGenome sequenceBiochemical approachesMammalian hostsIdentification of targetsBiological processesNumber of pathogensProtein synthesisPharmaceutical exploitationSynthesis pathwayCertain pathwaysNovel targetPathogenic bacteriaEnzyme presentPathwayDiagnostic targetsCell viabilityKey processesGenomicsRecent advancesTarget
2000
A dual-specificity aminoacyl-tRNA synthetase in the deep-rooted eukaryote Giardia lamblia
Bunjun S, Stathopoulos C, Graham D, Min B, Kitabatake M, Wang A, Wang C, Vivarès C, Weiss L, Söll D. A dual-specificity aminoacyl-tRNA synthetase in the deep-rooted eukaryote Giardia lamblia. Proceedings Of The National Academy Of Sciences Of The United States Of America 2000, 97: 12997-13002. PMID: 11078517, PMCID: PMC27167, DOI: 10.1073/pnas.230444397.Peer-Reviewed Original ResearchConceptsCys-tRNAAminoacyl-tRNA synthetaseProlyl-tRNA synthetasePrimitive eukaryote Giardia lambliaPro geneEukaryote Giardia lambliaNumber of archaeaAlanyl-tRNA synthetasesCysteinyl-tRNA synthetaseE. coli tRNACysS genesM. jannaschiiMethanococcus jannaschiiMost organismsGenomic sequencesSaccharomyces cerevisiaeCysteinyl-tRNAGene productsPro-tRNATRNA synthetaseDual specificityMethanobacterium thermoautotrophicumProtein synthesisEscherichia coliAmino acidsDomain-specific recruitment of amide amino acids for protein synthesis
Tumbula D, Becker H, Chang W, Söll D. Domain-specific recruitment of amide amino acids for protein synthesis. Nature 2000, 407: 106-110. PMID: 10993083, DOI: 10.1038/35024120.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetaseAsparaginyl-tRNA synthetaseProtein synthesisAmino acidsAminoacyl-transfer RNAAmino acid metabolismGlu-tRNAGlnAsn-tRNAProtein biosynthesisGln-tRNAArchaeaTRNASynthetaseAmidotransferaseBacteriaAmidotransferasesDirect evidenceDifferent mechanismsBiosynthesisCentral importanceCrucial stepRNAOrganismsDomainCytoplasmThe Adaptor hypothesis revisited
Ibba M, Becker H, Stathopoulos C, Tumbula D, Söll D, Ibba M, Becker H, Stathopoulos C, Tumbula D, Söll D. The Adaptor hypothesis revisited. Trends In Biochemical Sciences 2000, 25: 311-316. PMID: 10871880, DOI: 10.1016/s0968-0004(00)01600-5.Peer-Reviewed Original ResearchOne Polypeptide with Two Aminoacyl-tRNA Synthetase Activities
Stathopoulos C, Li T, Longman R, Vothknecht U, Becker H, Ibba M, Söll D. One Polypeptide with Two Aminoacyl-tRNA Synthetase Activities. Science 2000, 287: 479-482. PMID: 10642548, DOI: 10.1126/science.287.5452.479.Peer-Reviewed Original ResearchConceptsProlyl-tRNA synthetaseProtein synthesisCysteinyl-tRNA synthetase activityAmino-terminal sequenceSynthetase activityAminoacyl-tRNA synthetase activityCertain archaeaEvolutionary originMethanococcus jannaschiiGenome sequenceSubstrate specificityGenetic analysisSuch organismsMessenger RNARNA synthetasesSynthetaseSequenceArchaeaJannaschiiSynthetasesRNAOrganismsPolypeptideProlylProtein
1998
Glutamyl-tRNAGln amidotransferase in Deinococcus radiodurans may be confined to asparagine biosynthesis
Curnow A, Tumbula D, Pelaschier J, Min B, Söll D. Glutamyl-tRNAGln amidotransferase in Deinococcus radiodurans may be confined to asparagine biosynthesis. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 12838-12843. PMID: 9789001, PMCID: PMC23620, DOI: 10.1073/pnas.95.22.12838.Peer-Reviewed Original ResearchConceptsDeinococcus radioduransD. radiodurans genomeRadiation-resistant bacterium Deinococcus radioduransBiosynthesis of asparagineGlutaminyl-tRNA synthetaseGlutamyl-tRNA synthetaseBacterium Deinococcus radioduransPresence of AsnRSAsparaginyl-tRNA synthetaseAspartyl-tRNA synthetaseAsn-tRNAAsparagine biosynthesisAsparaginyl-tRNAGenomic sequencesGln-tRNAAsparagine synthetaseBiochemical experimentsTransamidation activityGlutaminyl-tRNAProtein synthesisSingle enzymeSynthetaseRadioduransBiosynthesisGenes
1997
Aminoacyl-tRNA synthesis: divergent routes to a common goal
Ibba M, Curnow A, Söll D. Aminoacyl-tRNA synthesis: divergent routes to a common goal. Trends In Biochemical Sciences 1997, 22: 39-42. PMID: 9048478, DOI: 10.1016/s0968-0004(96)20033-7.Peer-Reviewed Original Research
1995
Divergence of glutamate and glutamine aminoacylation pathways: Providing the evolutionary rationale for mischarging
Rogers K, Söll D. Divergence of glutamate and glutamine aminoacylation pathways: Providing the evolutionary rationale for mischarging. Journal Of Molecular Evolution 1995, 40: 476-481. PMID: 7783222, DOI: 10.1007/bf00166615.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetaseGlutamine tRNAEukaryotic organismsProkaryotic organismsGln-tRNAGlnHorizontal gene transfer eventsGene transfer eventsGlutaminyl-tRNA synthetasesGram-negative eubacteriaGlutamyl-tRNA synthetaseAminoacyl-tRNA synthetasesAminoacyl-tRNA synthetaseFamily of enzymesEukaryotic organellesPool of glutamateAminoacyl-tRNATRNADifferent cellular mechanismsEvolutionary rationaleProtein synthesisOrganismsAmino acidsTransfer eventsCellular mechanismsSynthetase
1994
A point mutation in Euglena gracilis chloroplast tRNA(Glu) uncouples protein and chlorophyll biosynthesis.
Stange-Thomann N, Thomann H, Lloyd A, Lyman H, Söll D. A point mutation in Euglena gracilis chloroplast tRNA(Glu) uncouples protein and chlorophyll biosynthesis. Proceedings Of The National Academy Of Sciences Of The United States Of America 1994, 91: 7947-7951. PMID: 8058739, PMCID: PMC44521, DOI: 10.1073/pnas.91.17.7947.Peer-Reviewed Original ResearchMeSH KeywordsAldehyde OxidoreductasesAnimalsBase SequenceBlotting, NorthernChlorophyllChloroplastsCloning, MolecularDNADNA PrimersEuglena gracilisIntramolecular TransferasesIsomerasesMolecular Sequence DataNucleic Acid ConformationPoint MutationPolymerase Chain ReactionProtein BiosynthesisRNA, Transfer, GluConceptsEuglena gracilis chloroplastsChlorophyll biosynthesisGlu-tRNA reductaseChlorophyll-deficient mutantsPoint mutationsChloroplast protein synthesisSequence-specific mannerDual-function moleculeC5 pathwayNADPH-dependent reductionSpecific cofactorsGluTRFirst enzymeGene productsUniversal precursorImportant identity elementAminomutase activitySequence analysisE. gracilisSecond enzymeTetrapyrrole pigmentsT-loopProtein synthesisBiosynthesisChloroplasts
1993
Specificity in RNA: Protein Interactions; the Recognition of Escherichia Coli Glutamine tRNA
Rogers M, Weygand-Durašević I, Schwob E, Sherman J, Rogers K, Thomann H, Sylvers L, Jahn M, Inokuchi H, Ohtsuka E, Söll D. Specificity in RNA: Protein Interactions; the Recognition of Escherichia Coli Glutamine tRNA. 1993, 47-58. DOI: 10.1007/978-1-4615-2407-6_5.Peer-Reviewed Original ResearchProtein interactionsEscherichia coli glutaminyl-tRNA synthetaseRNA-protein structuresRole of tRNAGlutaminyl-tRNA synthetaseAminoacyl-tRNA synthetaseCognate aminoacyl-tRNA synthetaseRecognition of tRNAGenetic codeGlutamine tRNAAccuracy of translationRNA structureTRNABiophysical techniquesProtein synthesisMolecular levelMetabolic functionsAminoacyl-tRNA synthetase systemsCurrent understandingRNASynthetase systemSynthetaseUnusual elementsInteractionVariety
1990
Yeast suppressor mutations and transfer RNA processing
Nichols M, Willis I, Söll D. Yeast suppressor mutations and transfer RNA processing. Methods In Enzymology 1990, 181: 377-394. PMID: 2199758, DOI: 10.1016/0076-6879(90)81137-j.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceBlotting, NorthernChromosomes, FungalGenes, FungalIndicators and ReagentsMolecular Sequence DataMutationNucleic Acid ConformationNucleic Acid HybridizationRNA Polymerase IIIRNA Processing, Post-TranscriptionalRNA, TransferRNA, Transfer, SerSaccharomyces cerevisiaeSuppression, GeneticTranscription FactorsTranscription, GeneticConceptsTRNA genesMature-sized tRNAsRNA processing reactionsPrimer-directed mutagenesisAminoacyl-tRNA synthetaseTransfer RNA moleculesCognate aminoacyl-tRNA synthetaseRNA processingSuppressor mutationsTRNA locusElongation factorProtein biosynthesisRibosomal interactionsRNA moleculesMutant strainStructural proteinsPink coloniesTranscription efficiencyProcessing reactionsProtein synthesisSuppressor functionTRNALow template concentrationsGenesLoci