2008
Life without RNase P
Randau L, Schröder I, Söll D. Life without RNase P. Nature 2008, 453: 120-123. PMID: 18451863, DOI: 10.1038/nature06833.Peer-Reviewed Original Research
2006
RNA‐Dependent Cysteine Biosynthesis in Archaea
Yuan J, Sauerwald A, Zhu W, Major T, Roy H, Palioura S, Jahn D, Whitman W, Yates J, Ibba M, Söll D. RNA‐Dependent Cysteine Biosynthesis in Archaea. The FASEB Journal 2006, 20: a503-a504. DOI: 10.1096/fasebj.20.4.a503-d.Peer-Reviewed Original ResearchCysteine biosynthesisSep-tRNACys-tRNA synthaseCys-tRNACysPhosphoseryl-tRNA synthetaseCysteinyl-tRNA synthetaseCys-tRNAGenetic experimentsSec tRNAMost organismsMethanocaldococcus jannaschiiGenetic codeGenomic analysisEssential enzymeMethanogenic archaeaArchaeaSimilar enzymesO-phosphoserineBiosynthesisOrganismsSynthetaseEnzymePathwaySulfur donorSole route
2002
tRNA‐dependent amino acid discrimination by yeast seryl‐tRNA synthetase
Gruic‐Sovulj I, Landeka I, Söll D, Weygand‐Durasevic I. tRNA‐dependent amino acid discrimination by yeast seryl‐tRNA synthetase. The FEBS Journal 2002, 269: 5271-5279. PMID: 12392560, DOI: 10.1046/j.1432-1033.2002.03241.x.Peer-Reviewed Original ResearchConceptsSeryl-tRNA synthetaseYeast seryl-tRNA synthetaseCognate tRNA moleculesAmino acid discriminationAminoacyl-tRNA synthetasesAmino acid substratesSimilar amino acidsAmino acid serineGenetic codeEnzyme active siteTRNA moleculesActive siteYeast SerRSConformational changesAcid substratesAmino acidsSerineSynthetaseStoichiometric analysisDifferent affinitiesEnzymeAccurate translationTRNASerSynthetasesSaccharomyces
2001
A Single Amidotransferase Forms Asparaginyl-tRNA and Glutaminyl-tRNA in Chlamydia trachomatis *
Raczniak G, Becker H, Min B, Söll D. A Single Amidotransferase Forms Asparaginyl-tRNA and Glutaminyl-tRNA in Chlamydia trachomatis *. Journal Of Biological Chemistry 2001, 276: 45862-45867. PMID: 11585842, DOI: 10.1074/jbc.m109494200.Peer-Reviewed Original ResearchConceptsAsn-tRNAGln-tRNAAminoacyl-tRNAOperon-like arrangementAccurate protein synthesisGlutaminyl-tRNA synthetaseGlutamyl-tRNA synthetaseAminoacyl-tRNA synthetasesAsparaginyl-tRNA synthetaseAspartyl-tRNA synthetaseGat genesAsparaginyl-tRNAGenome sequenceMost bacteriaGlutaminyl-tRNAAmidotransferaseProtein synthesisSynthetasesSynthetaseGenesAmide donorEnzymeAspGluGenomeThe renaissance of aminoacyl‐tRNA synthesis
Ibba M, Söll D. The renaissance of aminoacyl‐tRNA synthesis. EMBO Reports 2001, 2: 382-387. PMID: 11375928, PMCID: PMC1083889, DOI: 10.1093/embo-reports/kve095.Peer-Reviewed Original ResearchConceptsAminoacyl-tRNA synthesisProtein synthesisRole of tRNAEvolutionary diversityStructural biologyMolecular biologistsUnexpected arrayMolecular biologyNew enzymeDecades of studyAmino acidsEssential processTRNABiologyComplete pictureGenomicsAdaptorBiologistsDiversityEnzymePathwayHigh degreeSynthesisNumerous milestones
2000
The Adaptor hypothesis revisited
Ibba M, Becker H, Stathopoulos C, Tumbula D, Söll D, Ibba M, Becker H, Stathopoulos C, Tumbula D, Söll D. The Adaptor hypothesis revisited. Trends In Biochemical Sciences 2000, 25: 311-316. PMID: 10871880, DOI: 10.1016/s0968-0004(00)01600-5.Peer-Reviewed Original ResearchAminoacyl-tRNA Synthetases, the Genetic Code, and the Evolutionary Process
Woese C, Olsen G, Ibba M, Söll D. Aminoacyl-tRNA Synthetases, the Genetic Code, and the Evolutionary Process. Microbiology And Molecular Biology Reviews 2000, 64: 202-236. PMID: 10704480, PMCID: PMC98992, DOI: 10.1128/mmbr.64.1.202-236.2000.Peer-Reviewed Original ResearchConceptsAminoacyl-tRNA synthetasesIndividual aminoacyl-tRNA synthetasesEvolutionary processesAAR geneEvolutionary relationshipsPhylogenetic treeGenetic codeUniversal phylogenetic treeDistant evolutionary pastOrganismal phylogenyOrganismal domainsCodon assignmentsTaxonomic distributionEvolutionary pastHorizontal transferEvolutionary profilesGenetic materialIndividual enzymesEvolutionary perspectiveSynthetasesGenesEnzymeBacteriaModern counterpartsTrees
1999
Selective inhibition of HEMA gene expression by photooxidation in Arabidopsis thaliana
Kumar M, Chaturvedi S, Söll D. Selective inhibition of HEMA gene expression by photooxidation in Arabidopsis thaliana. Phytochemistry 1999, 51: 847-851. PMID: 10423858, DOI: 10.1016/s0031-9422(99)00114-4.Peer-Reviewed Original ResearchConceptsArabidopsis thalianaChloroplasts of plantsGlutamyl-tRNA reductaseCarotenoid biosynthesisFirst enzymeALA formationPhotobleaching herbicidesPhotooxidative damageGene expressionSelective inhibitionCarotenoid pigmentsNorflurazonThalianaPlantsChloroplastsFirst precursorPathwayExpressionEnzymeInitial metaboliteAlaBiosynthesisInhibitionTetrapyrrolesGlutamateSubstrate recognition by class I lysyl-tRNA synthetases: A molecular basis for gene displacement
Ibba M, Losey H, Kawarabayasi Y, Kikuchi H, Bunjun S, Söll D. Substrate recognition by class I lysyl-tRNA synthetases: A molecular basis for gene displacement. Proceedings Of The National Academy Of Sciences Of The United States Of America 1999, 96: 418-423. PMID: 9892648, PMCID: PMC15151, DOI: 10.1073/pnas.96.2.418.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesBase SequenceBorrelia burgdorferi GroupCloning, MolecularDiphosphatesEscherichia coliEvolution, MolecularGenes, ArchaealGenes, BacterialGenetic Complementation TestKineticsLysine-tRNA LigaseMethanococcusMolecular Sequence DataNucleic Acid ConformationPhylogenyRNA, Transfer, Amino AcylSequence Analysis, DNASubstrate SpecificityTranscription, GeneticConceptsClass II LysRSAminoacyl-tRNA synthetasesLysyl-tRNA synthetasesSubstrate recognitionMolecular basisBacterial class IClass II enzymesSequence-specific recognitionGene displacementTranslational apparatusTRNA recognitionEscherichia coli strainsLysRSLysRSsSame nucleotideSynthetasesDiscriminator baseUnrelated typesLysine activationCertain bacteriaII enzymesColi strainsTRNALysClass IEnzyme
1998
C‐terminal truncation of yeast SerRS is toxic for Saccharomyces cerevisiae due to altered mechanism of substrate recognition
Lenhard B, Prætorius-Ibba M, Filipic S, Söll D, Weygand-Durasevic I. C‐terminal truncation of yeast SerRS is toxic for Saccharomyces cerevisiae due to altered mechanism of substrate recognition. FEBS Letters 1998, 439: 235-240. PMID: 9845329, DOI: 10.1016/s0014-5793(98)01376-3.Peer-Reviewed Original ResearchMaize mitochondrial seryl-tRNA synthetase recognizes Escherichia coli tRNASer in vivo and in vitro
Rokov J, Söll D, Weygand-Durašević I. Maize mitochondrial seryl-tRNA synthetase recognizes Escherichia coli tRNASer in vivo and in vitro. Plant Molecular Biology 1998, 38: 497-502. PMID: 9747857, DOI: 10.1023/a:1006088516228.Peer-Reviewed Original ResearchConceptsSeryl-tRNA synthetaseMitochondrial seryl-tRNA synthetasePutative mature proteinSeryl-tRNA synthetasesEscherichia coliStructure/function relationshipsMature proteinGene sequencesMutant strainSignificant similarityFunctional identityN-terminalYeast tRNAMitochondrial functionFunction relationshipsProteinPoor substrateSynthetaseColiSynthetasesTRNAVivoCDNAMaizeEnzyme
1997
Glu-tRNAGln amidotransferase: A novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation
Curnow A, Hong K, Yuan R, Kim S, Martins O, Winkler W, Henkin T, Söll D. Glu-tRNAGln amidotransferase: A novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proceedings Of The National Academy Of Sciences Of The United States Of America 1997, 94: 11819-11826. PMID: 9342321, PMCID: PMC23611, DOI: 10.1073/pnas.94.22.11819.Peer-Reviewed Original ResearchConceptsTranscriptional unitsGln-tRNAGlnGram-positive eubacteriaHeterotrimeric enzymeGlu-tRNAGlnTranslational apparatusHeterotrimeric proteinGlutamine codonB. subtilisAmidotransferaseSynthetase activityOnly pathwayEnzymeGlutamylEssential componentArchaeaTransamidationEubacteriaOperonCyanobacteriaGATCOrganellesCodonGenesGATAGlutaminyl-tRNA synthetase.
Freist W, Gauss D, Ibba M, Söll D. Glutaminyl-tRNA synthetase. Biological Chemistry 1997, 378: 1103-17. PMID: 9372179.Peer-Reviewed Original ResearchConceptsE. coli GlnRSGlutaminyl-tRNA synthetaseGlutamyl-tRNA synthetaseMammalian enzymeCommon ancestorPositive eubacteriaCognate tRNAMultienzyme complexTRNA moleculesGlnRArtificial mutantsAcceptor stemAnticodon loopMolecular massAmino acidsCatalytic siteEnzymeSynthetaseEubacteriaArchaebacteriaTRNAMutantsOrganellesAncestorComplexestRNA-dependent amino acid transformations.
Curnow A, Hong K, Yuan R, Söll D. tRNA-dependent amino acid transformations. Nucleic Acids Symposium Series 1997, 2-4. PMID: 9478189.Peer-Reviewed Original ResearchAminoacyl-tRNA synthesis in Archaea.
Ibba M, Celic I, Curnow A, Kim H, Pelaschier J, Tumbula D, Vothknecht U, Woese C, Söll D. Aminoacyl-tRNA synthesis in Archaea. Nucleic Acids Symposium Series 1997, 305-6. PMID: 9586121.Peer-Reviewed Original ResearchConceptsAminoacyl-tRNA synthesisLysyl-tRNA synthetasesGlutaminyl-tRNA synthetasesArchaeon Haloferax volcaniiArchaeal genomesGlu-tRNAAsn-tRNAHaloferax volcaniiNumber of organismsGln-tRNAGenetic studiesArchaeaAsp-tRNASynthetasesAsparaginylCysteinylEukaryaVolcaniiGenomeGlutaminylOrganismsSequencingBacteriaEnzymeTransamidation
1996
Glutamyl-transfer RNA: at the crossroad between chlorophyll and protein biosynthesis
Kumar A, Schaub U, Söll D, Ujwal M. Glutamyl-transfer RNA: at the crossroad between chlorophyll and protein biosynthesis. Trends In Plant Science 1996, 1: 371-376. DOI: 10.1016/s1360-1385(96)80311-6.Peer-Reviewed Original ResearchTransfer RNAConversion of GSAGlu-tRNA reductaseEssential biosynthetic processesVariety of plantsChlorophyll biosynthesisGlu-tRNAHigher plantsProtein biosynthesisBiosynthetic processesBiosynthesisPlantsPivotal stepFirst pivotal stepChloroplastsKey precursorBiosynthesesGenesRNAProteinReductaseChlorophyllEnzymeRegulationAlaGenetic analysis of functional connectivity between substrate recognition domains ofEscherichia coli glutaminyl-tRNA synthetase
Kitabatake M, Inokuchi H, Ibba M, Hong K, Söll D. Genetic analysis of functional connectivity between substrate recognition domains ofEscherichia coli glutaminyl-tRNA synthetase. Molecular Genetics And Genomics 1996, 252: 717-722. PMID: 8917315, DOI: 10.1007/bf02173978.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetaseWild-type enzymeSubstrate discriminationDouble mutantSubstrate recognition domainThree-dimensional structureAnticodon recognitionSubstrate specificityTRNA bindingGenetic analysisAcceptor stemRecognition domainC171Ternary complexExtensive interactionsMutantsPotential involvementG mutationEnzymeHigh KmSynthetaseMutationsActive siteE222GlnRThe C-terminal Extension of Yeast Seryl-tRNA Synthetase Affects Stability of the Enzyme and Its Substrate Affinity (*)
Weygand-Durasevic I, Lenhard B, Filipic S, Söll D. The C-terminal Extension of Yeast Seryl-tRNA Synthetase Affects Stability of the Enzyme and Its Substrate Affinity (*). Journal Of Biological Chemistry 1996, 271: 2455-2461. PMID: 8576207, DOI: 10.1074/jbc.271.5.2455.Peer-Reviewed Original ResearchHomologous Expression and Purification of Mutants of an Essential Protein by Reverse Epitope-Tagging
Thomann H, Ibba M, Hong K, Söll D. Homologous Expression and Purification of Mutants of an Essential Protein by Reverse Epitope-Tagging. Bio/Technology 1996, 14: 50-55. PMID: 9636312, DOI: 10.1038/nbt0196-50.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetaseMutant enzymesEssential enzymeGlutaminyl-tRNA synthetasesWild-type proteinExtrachromosomal genetic elementsEpitope taggingEssential proteinsMutant proteinsHomologous expressionReporter epitopeCell-free extractsGenetic elementsNormal phenotypeBiochemical studiesEnzymatic activityEnzymeProteinSynthetaseProtein contaminationExpressionPurificationMutantsSynthetasesNovel strategy
1993
Incomplete citric acid cycle obliges aminolevulinic acid synthesis via the C5 pathway in a methylotroph
Lloyd A, Weitzman P, Söll D. Incomplete citric acid cycle obliges aminolevulinic acid synthesis via the C5 pathway in a methylotroph. Microbiology 1993, 139: 2931-2938. DOI: 10.1099/00221287-139-12-2931.Peer-Reviewed Original ResearchC5 pathwayM. methylotrophusAminolevulinic acid synthesisTRNA-dependent mannerConversion of pyruvateCitric acid cycleMalate dehydrogenase activityMammalian cellsGlyoxylate cycleALA formationCell-free extractsGlu-tRNAGluAcid cycleIsocitrate dehydrogenaseMethylophilus methylotrophusCatabolic roleAcid synthesisPathwayEnzymic activityDehydrogenase activityEnzymeConnected pathwaysAlaMethylotrophsYeast