2019
Promoters to Study Vascular Smooth Muscle
Chakraborty R, Saddouk FZ, Carrao AC, Krause DS, Greif DM, Martin KA. Promoters to Study Vascular Smooth Muscle. Arteriosclerosis Thrombosis And Vascular Biology 2019, 39: 603-612. PMID: 30727757, PMCID: PMC6527360, DOI: 10.1161/atvbaha.119.312449.Peer-Reviewed Original ResearchMeSH KeywordsActinsAnimalsCell LineCell LineageCell TransdifferentiationGene Expression RegulationGene Knockout TechniquesGene TargetingHumansMiceMicrofilament ProteinsMuscle ProteinsMuscle, Smooth, VascularMyocytes, Smooth MuscleMyofibroblastsMyosin Heavy ChainsNeovascularization, PathologicNeovascularization, PhysiologicPhenotypePromoter Regions, GeneticRecombinant Fusion ProteinsConceptsSmooth muscle cellsCre driver linesDiversity of phenotypesMuscle cell typesVisceral smooth muscle cellsSMC transdifferentiationActa2 promoterRemarkable plasticityExciting new eraSMC functionCell typesCre linesEmbryonic heartExciting discoveriesPhenotypeMuscle cellsPerivascular adipocytesPromoterVascular smooth muscleNonmuscular cellsExpressionMyeloid cellsCardiovascular phenotypesCellsBlood vessel wall
2016
Adult human megakaryocyte-erythroid progenitors are in the CD34+CD38mid fraction
Sanada C, Xavier-Ferrucio J, Lu YC, Min E, Zhang PX, Zou S, Kang E, Zhang M, Zerafati G, Gallagher PG, Krause DS. Adult human megakaryocyte-erythroid progenitors are in the CD34+CD38mid fraction. Blood 2016, 128: 923-933. PMID: 27268089, PMCID: PMC4990855, DOI: 10.1182/blood-2016-01-693705.Peer-Reviewed Original ResearchConceptsMegakaryocyte/erythroid progenitorsComparative expression analysisNovel enrichment strategyMegakaryocyte-erythroid progenitorsPurification strategySingle-cell levelShort hairpin RNAFate decisionsE lineageNovel purification strategyLineage fateLineage commitmentGranulocyte colony-stimulating factor-mobilized peripheral bloodMK lineageExpression analysisE progenitorsErythroid lineageFactor-mobilized peripheral bloodDifferential expressionES cellsErythroid progenitorsMYB knockdownHairpin RNALineagesColony-forming units
2008
Hepatocyte Nuclear Factor‐1 as Marker of Epithelial Phenotype Reveals Marrow‐Derived Hepatocytes, but Not Duct Cells, After Liver Injury in Mice
Swenson ES, Guest I, Ilic Z, Mazzeo‐Helgevold M, Lizardi P, Hardiman C, Sell S, Krause DS. Hepatocyte Nuclear Factor‐1 as Marker of Epithelial Phenotype Reveals Marrow‐Derived Hepatocytes, but Not Duct Cells, After Liver Injury in Mice. Stem Cells 2008, 26: 1768-1777. PMID: 18467658, PMCID: PMC2846397, DOI: 10.1634/stemcells.2008-0148.Peer-Reviewed Original ResearchConceptsMarrow-derived epithelial cellsHepatocyte nuclear factor 1Y chromosomeNuclear factor 1Ductal progenitor cellsLiver injuryInflammatory cellsFemale miceProgenitor cellsEpithelial cellsFactor 1Male bone marrowStable hematopoietic engraftmentBone marrow originColocalization of GFPNuclear markersBone marrow cellsDuctal progenitorsHematopoietic engraftmentChromosomesBone marrowMarrow originPancytokeratin stainingCholangiocyte phenotypeMarrow cellsRectal Potential Difference and the Functional Expression of CFTR in the Gastrointestinal Epithelia in Cystic Fibrosis Mouse Models
Weiner SA, Caputo C, Bruscia E, Ferreira EC, Price JE, Krause DS, Egan ME. Rectal Potential Difference and the Functional Expression of CFTR in the Gastrointestinal Epithelia in Cystic Fibrosis Mouse Models. Pediatric Research 2008, 63: 73-78. PMID: 18043508, DOI: 10.1203/pdr.0b013e31815b4bc6.Peer-Reviewed Original ResearchConceptsRectal potential differenceMouse modelCF mouse modelsCystic fibrosisFibrosis mouse modelDifferent mouse modelsCystic fibrosis mouse modelUssing chamber methodEffects of interventionsAutosomal recessive diseasePharmacologic interventionsRespiratory epitheliumElectrophysiologic phenotypeGastrointestinal epitheliumCF transmembrane conductance regulator (CFTR) geneRecessive diseaseVivo methodsVivo assaysVivo dataCFTR functionTransmembrane conductance regulator geneReliable assayEpitheliumInterventionCFTR expression
2006
Threshold of Lung Injury Required for the Appearance of Marrow‐Derived Lung Epithelia
Herzog EL, Van Arnam J, Hu B, Krause DS. Threshold of Lung Injury Required for the Appearance of Marrow‐Derived Lung Epithelia. Stem Cells 2006, 24: 1986-1992. PMID: 16868209, DOI: 10.1634/stemcells.2005-0579.Peer-Reviewed Original ResearchConceptsBone marrow-derived cellsBone marrow transplantationLung injuryMarrow transplantationLung epitheliumEngraftment of BMDCsLocal host factorsSex-mismatched bone marrow transplantationMarrow-derived cellsType II pneumocytesMyeloablative radiationLung damageHematopoietic chimerismEpithelial chimerismApparent injuryInjuryTransplantationHost factorsEpitheliumEpithelial cellsEpithelial phenotypeLungChimerismPneumocytesPhenotypic changes
2003
Comment on "Little Evidence for Developmental Plasticity of Adult Hematopoietic Stem Cells"
Theise ND, Krause DS, Sharkis S. Comment on "Little Evidence for Developmental Plasticity of Adult Hematopoietic Stem Cells". Science 2003, 299: 1317a-1317. PMID: 12610282, DOI: 10.1126/science.1078412.Peer-Reviewed Original Research
2001
Hematopoietic Stem Cells Can Be CD34+ or CD34-
Donnelly D, Krause D. Hematopoietic Stem Cells Can Be CD34+ or CD34-. Leukemia & Lymphoma 2001, 40: 221-234. PMID: 11426544, DOI: 10.3109/10428190109057921.Peer-Reviewed Original Research