2024
Aplastic anemia in association with multiple myeloma: clinical and pathophysiological insights
Muradashvili T, Liu Y, VanOudenhove J, Gu S, Krause D, Montanari F, Carlino M, Mancuso R, Stempel J, Halene S, Zeidan A, Podoltsev N, Neparidze N. Aplastic anemia in association with multiple myeloma: clinical and pathophysiological insights. Leukemia & Lymphoma 2024, ahead-of-print: 1-8. PMID: 39225418, DOI: 10.1080/10428194.2024.2393260.Peer-Reviewed Original ResearchAplastic anemiaMultiple myelomaImmunosuppressive therapyTransfusion requirementsProgenitor cellsPlasma cell-directed therapyT-cell destructionCell-directed therapiesInhibition of erythroid colony formationErythroid colony formationLevels of IL8Severe AAImmune cytopeniasPartial responseMM patientsHematopoietic stemSerum testsPartial improvementPathophysiological insightsPatientsImmune systemPlatelet apoptosisCytopeniasColony formationMyeloma
2023
Assay optimization for the objective quantification of human multilineage colony-forming units
Thompson E, Carlino M, Scanlon V, Grimes H, Krause D. Assay optimization for the objective quantification of human multilineage colony-forming units. Experimental Hematology 2023, 124: 36-44.e3. PMID: 37271449, PMCID: PMC10527702, DOI: 10.1016/j.exphem.2023.05.007.Peer-Reviewed Original ResearchConceptsFluorescence-activated cell sortingLineage potentialCommon myeloid progenitorsHigh-throughput microscopyMultilineage colony-forming unitsProportion of coloniesSpecific growth factorsCFU assayColony-forming unit assaysMultipotent progenitorsProgenitor populationsLineage outputSitu immunofluorescenceMegakaryocytic lineageMK cellsMegakaryocytic cellsCell typesMyeloid progenitorsProgenitor cellsCell morphologyCell sortingUnit assaysIL-3Colony typesCulture conditions
2021
Bone Marrow-Derived VSELs Engraft as Lung Epithelial Progenitor Cells after Bleomycin-Induced Lung Injury
Ciechanowicz AK, Sielatycka K, Cymer M, Skoda M, Suszyńska M, Bujko K, Ratajczak MZ, Krause DS, Kucia M. Bone Marrow-Derived VSELs Engraft as Lung Epithelial Progenitor Cells after Bleomycin-Induced Lung Injury. Cells 2021, 10: 1570. PMID: 34206516, PMCID: PMC8303224, DOI: 10.3390/cells10071570.Peer-Reviewed Original ResearchConceptsBronchioalveolar stem cellsOrganoid assaysAT2 cellsStem cellsH2B-GFP fusion proteinLung epithelial progenitor cellsProgenitor cellsEmbryonic-like stem cellsSurfactant protein CSmall embryonic-like stem cellsEpithelial progenitor cellsLung injuryNonhematopoietic stem cellsFusion proteinAlveolar type 2 cellsPhysiological potentialProgenitor activityBleomycin-Induced Lung InjuryH2B-GFP miceWT recipient miceRegenerative functionSPC promoterType 2 cellsVSELsReporter mice
2019
Transmembrane Protein Aptamer Induces Cooperative Signaling by the EPO Receptor and the Cytokine Receptor β-Common Subunit
He L, Cohen EB, Edwards APB, Xavier-Ferrucio J, Bugge K, Federman RS, Absher D, Myers RM, Kragelund BB, Krause DS, DiMaio D. Transmembrane Protein Aptamer Induces Cooperative Signaling by the EPO Receptor and the Cytokine Receptor β-Common Subunit. IScience 2019, 17: 167-181. PMID: 31279934, PMCID: PMC6614117, DOI: 10.1016/j.isci.2019.06.027.Peer-Reviewed Original ResearchErythropoietin receptorPrimary human hematopoietic progenitor cellsProtein aptamerGrowth factor independenceHuman hematopoietic progenitor cellsJAK/STATMurine BaF3 cellsTransmembrane domainCellular processesCytoplasmic tyrosinesCytoplasmic domainHematopoietic progenitor cellsErythroid differentiationBaF3 cellsCommon subunitFactor independenceSerum withdrawalCell deathCooperative signalingEPO receptorEPOR homodimersProgenitor cellsEssential roleSubunitsSignaling
2018
Concise Review: Bipotent Megakaryocytic-Erythroid Progenitors: Concepts and Controversies
Xavier-Ferrucio J, Krause DS. Concise Review: Bipotent Megakaryocytic-Erythroid Progenitors: Concepts and Controversies. Stem Cells 2018, 36: 1138-1145. PMID: 29658164, PMCID: PMC6105498, DOI: 10.1002/stem.2834.Peer-Reviewed Original ResearchConceptsMegakaryocytic-erythroid progenitorsProgenitor cellsDifferent functional outputsVariety of speciesProgenitor stageIntermediate progenitor stageErythroid cellsHuman hematopoiesisBlood formationMegakaryocytic lineageMurine cellsHematopoietic stemHematopoietic progenitorsFunctional outputStem cellsDifferentiation capabilityHematopoiesis processProgenitorsLineagesHematopoiesisCell sourceCellsDiscrete stepsRecent advancesSpecies
2017
Hematopoietic defects in response to reduced Arhgap21
Xavier-Ferrucio J, Ricon L, Vieira K, Longhini AL, Lazarini M, Bigarella CL, Franchi G, Krause DS, Saad STO. Hematopoietic defects in response to reduced Arhgap21. Stem Cell Research 2017, 26: 17-27. PMID: 29212046, PMCID: PMC6084430, DOI: 10.1016/j.scr.2017.11.014.Peer-Reviewed Original ResearchConceptsErythroid commitmentProgenitor cellsSerial bone marrow transplantationHuman primary cellsProtein familyRho GTPasesHematopoietic progenitor cellsPhenotypic HSCsRho GTPaseHematopoietic defectsRhoC activityNegative regulatorARHGAP21Hematopoietic stemHematopoietic cellsMyeloid progenitorsProgenitor coloniesPrimary cellsBone marrow cellsCancer cellsFunctional aspectsHaploinsufficient miceMarrow cellsCellsGTPases
2016
ISL1 cardiovascular progenitor cells for cardiac repair after myocardial infarction
Bartulos O, Zhuang ZW, Huang Y, Mikush N, Suh C, Bregasi A, Wang L, Chang W, Krause DS, Young LH, Pober JS, Qyang Y. ISL1 cardiovascular progenitor cells for cardiac repair after myocardial infarction. JCI Insight 2016, 1: e80920. PMID: 27525311, PMCID: PMC4982472, DOI: 10.1172/jci.insight.80920.Peer-Reviewed Original ResearchMyocardial infarctionControl animalsCardiovascular progenitor cellsProgenitor cellsVentricular contractile functionCardiac repair strategiesNew blood vesselsInfarct areaLineage-tracing studiesContractile functionCardiac repairBlood vessel formationMyocardial regenerationEndothelial cellsHeart tissueBlood vesselsMurine heartInfarctionVessel formationInjuryMiceDelivery approachCardiomyocytesHeartCells
2013
Very Small Embryonic‐Like Stem Cells from the Murine Bone Marrow Differentiate into Epithelial Cells of the Lung
Kassmer SH, Jin H, Zhang PX, Bruscia EM, Heydari K, Lee JH, Kim CF, Kassmer SH, Krause DS. Very Small Embryonic‐Like Stem Cells from the Murine Bone Marrow Differentiate into Epithelial Cells of the Lung. Stem Cells 2013, 31: 2759-2766. PMID: 23681901, PMCID: PMC4536826, DOI: 10.1002/stem.1413.Peer-Reviewed Original ResearchConceptsEpithelial cellsSmall embryonic-like stem cellsLung epithelial cellsEmbryonic-like stem cellsStem/progenitor cellsStem cellsDonor miceHematopoietic stem/progenitor cellsBM cellsAdult BMBone marrowSmall embryonicNonhematopoietic cellsProgenitor cellsBroad differentiation potentialVSELsEngraftmentLungHigh rateNumerous reportsAdult stem cellsDifferentiation potentialCellsFirst reportReport
2012
Successful collection and engraftment of autologous peripheral blood progenitor cells in poorly mobilized patients receiving high‐dose granulocyte colony‐stimulating factor
Cooper DL, Proytcheva M, Medoff E, Seropian SE, Snyder EL, Krause DS, Wu Y. Successful collection and engraftment of autologous peripheral blood progenitor cells in poorly mobilized patients receiving high‐dose granulocyte colony‐stimulating factor. Journal Of Clinical Apheresis 2012, 27: 235-241. PMID: 22566214, DOI: 10.1002/jca.21232.Peer-Reviewed Original ResearchConceptsHigh-dose G-CSFAutologous HPC transplantationHematopoietic progenitor cellsG-CSFHPC transplantationProgenitor cellsAutologous peripheral blood progenitor cell collectionHigh-dose granulocyte colony-stimulating factorAutologous peripheral blood progenitor cellsRetrospective medical record reviewPeripheral blood progenitor cell collectionPeripheral blood progenitor cellsMedical record reviewGranulocyte-colony stimulating factorGranulocyte colony-stimulating factorBlood progenitor cellsEfficacy of mobilizationProgenitor cell harvestsProgenitor cell collectionColony-stimulating factorPlatelet engraftmentRecord reviewSafety profileGood mobilizersPeripheral bloodNonhematopoietic Cells are the Primary Source of Bone Marrow‐Derived Lung Epithelial Cells
Kassmer SH, Bruscia EM, Zhang P, Krause DS. Nonhematopoietic Cells are the Primary Source of Bone Marrow‐Derived Lung Epithelial Cells. Stem Cells 2012, 30: 491-499. PMID: 22162244, PMCID: PMC3725285, DOI: 10.1002/stem.1003.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBacterial ProteinsBone Marrow CellsBone Marrow TransplantationCell SeparationEpithelial CellsGene ExpressionLuminescent ProteinsLungMiceMice, 129 StrainMice, Inbred C57BLMice, KnockoutMicroscopy, ConfocalPulmonary Surfactant-Associated Protein CRecombinant ProteinsSingle-Cell AnalysisConceptsLung epithelial cellsNonhematopoietic cellsBM cellsEpithelial cellsBone marrowLungs of miceType 2 pneumocytesNonhematopoietic stem cellsNonhematopoietic fractionAdult BMPrimitive stem cell populationNull miceProgenitor cellsMiceStem cell populationCell populationsMarrowStem cellsMultiple tissuesHematopoietic stemBMCellsPrevious studiesEngraftmentLung
2011
Targeted Gene Modification of Hematopoietic Progenitor Cells in Mice Following Systemic Administration of a PNA-peptide Conjugate
Rogers FA, Lin SS, Hegan DC, Krause DS, Glazer PM. Targeted Gene Modification of Hematopoietic Progenitor Cells in Mice Following Systemic Administration of a PNA-peptide Conjugate. Molecular Therapy 2011, 20: 109-118. PMID: 21829173, PMCID: PMC3255600, DOI: 10.1038/mt.2011.163.Peer-Reviewed Original ResearchConceptsGene modificationGene therapyHematopoietic stem cell gene therapyStem cell gene therapyGenomic modificationsVivo gene therapyCell gene therapyTargeted gene modificationVivo gene modificationHematopoietic progenitor cellsPeptide nucleic acidSystemic administrationBone marrowGene-targeting strategiesProgenitor cellsPrimary recipient miceStem cell mobilizationEx vivo manipulationSickle cell anemiaLymphoid cell lineagesDonor miceRecipient miceHematologic disordersInvasive alternativeCell mobilization
2008
Chimeric mice reveal clonal development of pancreatic acini, but not islets
Swenson ES, Xanthopoulos J, Nottoli T, McGrath J, Theise ND, Krause DS. Chimeric mice reveal clonal development of pancreatic acini, but not islets. Biochemical And Biophysical Research Communications 2008, 379: 526-531. PMID: 19116141, PMCID: PMC2657659, DOI: 10.1016/j.bbrc.2008.12.104.Peer-Reviewed Original ResearchConceptsStem/progenitor cellsMultiple progenitorsAdult mouse small intestineMale ES cellsProgenitor cellsFemale blastocystsCrypt stem cellsClonal descendantsES cellsY chromosomeChimeric miceFemale cellsIntestinal crypt stem cellsExocrine pancreatic aciniFemale epithelial cellsClonal developmentStem cellsSitu hybridizationMouse small intestineEpithelial cellsIntestinal cryptsProgenitorsPancreatic aciniCellsPancreatic isletsHepatocyte Nuclear Factor‐1 as Marker of Epithelial Phenotype Reveals Marrow‐Derived Hepatocytes, but Not Duct Cells, After Liver Injury in Mice
Swenson ES, Guest I, Ilic Z, Mazzeo‐Helgevold M, Lizardi P, Hardiman C, Sell S, Krause DS. Hepatocyte Nuclear Factor‐1 as Marker of Epithelial Phenotype Reveals Marrow‐Derived Hepatocytes, but Not Duct Cells, After Liver Injury in Mice. Stem Cells 2008, 26: 1768-1777. PMID: 18467658, PMCID: PMC2846397, DOI: 10.1634/stemcells.2008-0148.Peer-Reviewed Original ResearchConceptsMarrow-derived epithelial cellsHepatocyte nuclear factor 1Y chromosomeNuclear factor 1Ductal progenitor cellsLiver injuryInflammatory cellsFemale miceProgenitor cellsEpithelial cellsFactor 1Male bone marrowStable hematopoietic engraftmentBone marrow originColocalization of GFPNuclear markersBone marrow cellsDuctal progenitorsHematopoietic engraftmentChromosomesBone marrowMarrow originPancytokeratin stainingCholangiocyte phenotypeMarrow cells
2007
Circulating stem cells in extremely preterm neonates
Bizzarro MJ, Bhandari V, Krause DS, Smith BR, Gross I. Circulating stem cells in extremely preterm neonates. Acta Paediatrica 2007, 96: 521-525. PMID: 17391470, DOI: 10.1111/j.1651-2227.2007.00194.x.Peer-Reviewed Original ResearchConceptsWeeks of lifePreterm neonatesNeonatal morbidityPulmonary functionPremature neonatesGestational agePeripheral bloodInitial CD34Median gestational agePulmonary function testsShort-term outcomesUmbilical cord bloodFunction testsNeonatal demographicsBirth weightCord bloodRespiratory diseaseNeonatesCell countCD34Progenitor cellsInverse correlationWeeksBloodMorbidity
2006
Host factors that impact the biodistribution and persistence of multipotent adult progenitor cells
Tolar J, O'Shaughnessy MJ, Panoskaltsis-Mortari A, McElmurry RT, Bell S, Riddle M, McIvor RS, Yant SR, Kay MA, Krause D, Verfaillie CM, Blazar BR. Host factors that impact the biodistribution and persistence of multipotent adult progenitor cells. Blood 2006, 107: 4182-4188. PMID: 16410448, PMCID: PMC1895284, DOI: 10.1182/blood-2005-08-3289.Peer-Reviewed Original ResearchConceptsMultipotent adult progenitor cellsAdult progenitor cellsB cell-deficient miceMajor histocompatibility complex antigensT cell alloresponsesProgenitor cellsIntra-arterial injectionIntra-arterial deliveryHistocompatibility complex antigensMHC class INK depletionAllogeneic marrowNK cellsNK cytolysisMajor uptake siteWidespread biodistributionHost irradiationT cellsIntravenous injectionComplex antigensImmunohistochemical analysisB cellsUptake sitesHost factorsClass I
2002
Bone marrow to liver: the blood of Prometheus
Theise ND, Krause DS. Bone marrow to liver: the blood of Prometheus. Seminars In Cell And Developmental Biology 2002, 13: 411-417. PMID: 12468241, DOI: 10.1016/s1084952102001283.Peer-Reviewed Original Research
1999
A phase I study of paclitaxel for mobilization of peripheral blood progenitor cells
Burtness B, Psyrri A, Rose M, D’Andrea E, Staugaard-Hahn C, Henderson-Bakas M, Clark M, Mechanic S, Krause D, Snyder E, Cooper R, Abrantes J, Corringham R, Deisseroth A, Cooper D. A phase I study of paclitaxel for mobilization of peripheral blood progenitor cells. Bone Marrow Transplantation 1999, 23: 311-315. PMID: 10100573, DOI: 10.1038/sj.bmt.1701589.Peer-Reviewed Original ResearchConceptsSchedule of paclitaxelDose escalationH infusionPeripheral blood progenitor cellsDose of paclitaxelPhase I trialBlood progenitor cellsStem cell yieldStem cellsTolerable toxicityI trialInfusion scheduleDose levelsPhase IPaclitaxelDoseProgenitor cellsCells/NeuropathyFilgrastimInfusionEscalation
1998
CD34 expression by embryonic hematopoietic and endothelial cells does not require c-Myb.
Krause DS, Mucenski ML, Lawler AM, May WS. CD34 expression by embryonic hematopoietic and endothelial cells does not require c-Myb. Experimental Hematology 1998, 26: 1086-92. PMID: 9766450.Peer-Reviewed Original ResearchConceptsC-MybDevelopmental hematopoiesisES cellsPromoter activityHematopoietic cellsD3 embryonic stem cellsStage-specific mannerES cell differentiationEmbryonic stem cellsPrimitive hematopoietic cellsDefinitive hematopoiesisBone marrow stemCell surface glycoproteinBlood islandsEmbryoid bodiesEndothelial cellsTransient transfectionCell differentiationEmbryosStem cellsProgenitor cellsYolk sacHematopoiesisNonhematopoietic cellsCD34 expression
1997
Regulation of CD34 expression in differentiating M1 cells.
Krause DS, Kapadia SU, Raj NB, May WS. Regulation of CD34 expression in differentiating M1 cells. Experimental Hematology 1997, 25: 1051-61. PMID: 9293902.Peer-Reviewed Original ResearchMeSH Keywords3T3 CellsAnimalsAntigens, CD34Base SequenceBinding SitesCell DifferentiationCells, CulturedDNA-Binding ProteinsDown-RegulationGene Expression RegulationGene Expression Regulation, DevelopmentalGene Expression Regulation, NeoplasticHematopoiesisLeukemia, MyeloidMiceMolecular Sequence DataNuclear ProteinsRNA, MessengerTranscription, GeneticConceptsTranscription initiation siteUntranslated regionPromoter activityHematopoietic stemCell type-specific expressionSecondary structureTATA-less promoterPromoter-luciferase reporter constructsFull promoter activityUpstream genomic DNAProgenitor cellsTranslation start siteMature blood cellsType-specific expressionOptimal promoter activityExtensive secondary structureP1 nuclease digestionCell-specific factorsTranscriptional initiationGene regulationTranscription factorsConsensus sitesStart siteRegulatory elementsTATA elementMultilineage gene expression precedes commitment in the hemopoietic system.
Hu M, Krause D, Greaves M, Sharkis S, Dexter M, Heyworth C, Enver T. Multilineage gene expression precedes commitment in the hemopoietic system. Genes & Development 1997, 11: 774-785. PMID: 9087431, DOI: 10.1101/gad.11.6.774.Peer-Reviewed Original ResearchConceptsGene expression programsMultilineage gene expressionLineage specificationExpression programsGene activityLocus activationMultipotential stateGene expressionCytokine receptorsHemopoietic stemGranulocytic lineageProgenitor cellsSingle-cell RT-PCRSame cellsHemopoietic systemRT-PCRExclusive commitmentCell RT-PCRCellsLineagesCoexpressionDifferentiationExpressionStemActivation