2007
Spectral Graph Theory and its Applications
Spielman D. Spectral Graph Theory and its Applications. 2007, 29-38. DOI: 10.1109/focs.2007.56.Peer-Reviewed Original ResearchSpectral partitioning works: Planar graphs and finite element meshes
Spielman D, Teng S. Spectral partitioning works: Planar graphs and finite element meshes. Linear Algebra And Its Applications 2007, 421: 284-305. DOI: 10.1016/j.laa.2006.07.020.Peer-Reviewed Original ResearchBounded-degree planar graphsPlanar graphsSpectral partitioning methodLaplacian matrixSmallest eigenvalueFinite element meshRatio of verticesClass of graphsDimensional meshesElement meshSpectral partitioning techniquesNumerical algorithmFiedler vectorPartitioning methodSmall separatorsTwo-dimensional meshEdge cutGraphSpectral bisectionEigenvaluesPartitioning techniquesMeshBoundsEigenvectorsMatrix
1996
Spectral partitioning works: planar graphs and finite element meshes
Spielman D, Teng S. Spectral partitioning works: planar graphs and finite element meshes. 2011 IEEE 52nd Annual Symposium On Foundations Of Computer Science 1996, 96-105. DOI: 10.1109/sfcs.1996.548468.Peer-Reviewed Original ResearchBounded-degree planar graphsPlanar graphsSpectral partitioning methodLaplacian matrixSmallest eigenvalueFinite element meshRatio of verticesClass of graphsDimensional meshesElement meshSpectral partitioning techniquesNumerical algorithmFiedler vectorPartitioning methodSmall separatorsTwo-dimensional meshEdge cutGraphSpectral bisectionEigenvaluesPartitioning techniquesMeshEigenvectorsBoundsMatrix