Featured Publications
The human malaria parasite Plasmodium falciparum can sense environmental changes and respond by antigenic switching
Schneider V, Visone J, Harris C, Florini F, Hadjimichael E, Zhang X, Gross M, Rhee K, Mamoun C, Kafsack B, Deitsch K. The human malaria parasite Plasmodium falciparum can sense environmental changes and respond by antigenic switching. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2302152120. PMID: 37068249, PMCID: PMC10151525, DOI: 10.1073/pnas.2302152120.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigenic VariationGene Expression RegulationHumansMalaria, FalciparumParasitesPlasmodium falciparumProtozoan ProteinsConceptsGene switchingGene expressionHistone methyltransferasesHuman malaria parasite Plasmodium falciparumMalaria parasite Plasmodium falciparumS-adenosylmethionineGene expression patternsMulticopy gene familiesVariant surface proteinsParasite Plasmodium falciparumHuman malaria parasiteIntracellular S-adenosylmethioninePrincipal methyl donorEpigenetic controlGene familyActive genesAntigenic switchingGene transcriptionNutrient availabilityExpression patternsMethylation modificationSAM metabolismGenetic modificationAntigenic variationSurface proteins
2024
A kalihinol analog disrupts apicoplast function and vesicular trafficking in P. falciparum malaria
Chahine Z, Abel S, Hollin T, Barnes G, Chung J, Daub M, Renard I, Choi J, Vydyam P, Pal A, Alba-Argomaniz M, Banks C, Kirkwood J, Saraf A, Camino I, Castaneda P, Cuevas M, De Mercado-Arnanz J, Fernandez-Alvaro E, Garcia-Perez A, Ibarz N, Viera-Morilla S, Prudhomme J, Joyner C, Bei A, Florens L, Ben Mamoun C, Vanderwal C, Le Roch K. A kalihinol analog disrupts apicoplast function and vesicular trafficking in P. falciparum malaria. Science 2024, 385: eadm7966. PMID: 39325875, DOI: 10.1126/science.adm7966.Peer-Reviewed Original ResearchConceptsP. falciparum malariaHumanized mouse modelPlasmodium falciparum</i> strainsIn vivo studiesParasite apicoplastDrug sensitivityTherapeutic profileVesicular traffickingGenomic analysisLipid biogenesisSecretory machineryAsexual replicationGenetic analysisReduced susceptibilityCellular traffickingApicoplast functionStrong efficacyMED6Sexual differentiationHemolytic activityDrug pipelineApicoplastKalihinolTraffickingMalaria
2023
FT-GPI, a highly sensitive and accurate predictor of GPI-anchored proteins, reveals the composition and evolution of the GPI proteome in Plasmodium species
Sauer L, Canovas R, Roche D, Shams-Eldin H, Ravel P, Colinge J, Schwarz R, Ben Mamoun C, Rivals E, Cornillot E. FT-GPI, a highly sensitive and accurate predictor of GPI-anchored proteins, reveals the composition and evolution of the GPI proteome in Plasmodium species. Malaria Journal 2023, 22: 27. PMID: 36698187, PMCID: PMC9876418, DOI: 10.1186/s12936-022-04430-0.Peer-Reviewed Original ResearchConceptsGPI-APsOrder HaemosporidaGPI-APSequence diversityNew protein candidatesHost cell invasionHost-pathogen interactionsPlasmodium speciesGene duplicationHydrophobic helicesGPI anchorPlasma membraneDeletion eventsProtein candidatesProteomeCell invasionHaemosporidaProteinMalaria parasitesKey functionsDiverse groupSal-1ParasitesMalaria vaccine candidateSpecies
2020
Anti-PfGARP activates programmed cell death of parasites and reduces severe malaria
Raj DK, Das Mohapatra A, Jnawali A, Zuromski J, Jha A, Cham-Kpu G, Sherman B, Rudlaff RM, Nixon CE, Hilton N, Oleinikov AV, Chesnokov O, Merritt J, Pond-Tor S, Burns L, Jolly G, Ben Mamoun C, Kabyemela E, Muehlenbachs A, Lambert L, Orr-Gonzalez S, Gnädig NF, Fidock DA, Park S, Dvorin JD, Pardi N, Weissman D, Mui BL, Tam YK, Friedman JF, Fried M, Duffy PE, Kurtis JD. Anti-PfGARP activates programmed cell death of parasites and reduces severe malaria. Nature 2020, 582: 104-108. PMID: 32427965, PMCID: PMC7372601, DOI: 10.1038/s41586-020-2220-1.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAnimalsAntibodies, ProtozoanAntigens, ProtozoanAotidaeApoptosisCaspasesChildCohort StudiesDNA, ProtozoanEnzyme ActivationErythrocytesFemaleHumansIntercellular Signaling Peptides and ProteinsKenyaMalaria VaccinesMalaria, FalciparumMaleMiceParasitesPlasmodium falciparumProtozoan ProteinsTanzaniaTrophozoitesVacuolesConceptsTrophozoite-infected erythrocytesSevere malariaParasite antigensLongitudinal cohort studyPlasma of childrenCell deathNon-human primatesCohort studyEffective vaccineTanzanian childrenParasite densityInvasion of hepatocytesStage parasitesMalariaPlasmodium falciparumAntibodiesFalciparumKenyan adolescentsVaccineAntigenErythrocytesDeathChildrenInvasionParasites
2008
Disruption of the Plasmodium falciparum PfPMT Gene Results in a Complete Loss of Phosphatidylcholine Biosynthesis via the Serine-Decarboxylase-Phosphoethanolamine-Methyltransferase Pathway and Severe Growth and Survival Defects*
Witola WH, El Bissati K, Pessi G, Xie C, Roepe PD, Mamoun CB. Disruption of the Plasmodium falciparum PfPMT Gene Results in a Complete Loss of Phosphatidylcholine Biosynthesis via the Serine-Decarboxylase-Phosphoethanolamine-Methyltransferase Pathway and Severe Growth and Survival Defects*. Journal Of Biological Chemistry 2008, 283: 27636-27643. PMID: 18694927, PMCID: PMC2562060, DOI: 10.1074/jbc.m804360200.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsEthanolamineGene DeletionMethylationMethyltransferasesPhosphatidylcholinesPlasmodium falciparumProtozoan ProteinsSerineConceptsSDPM pathwayBiosynthesis of phosphatidylcholinePhosphatidylcholine biosynthesisParasite growthMajor membrane phospholipidsHuman malaria parasiteHost serineSerine decarboxylaseGenetic evidenceMethyltransferase enzymeSurvival defectGene resultsYeast cellsMethylation of phosphatidylethanolamineBiosynthesisSynthesis of phosphatidylcholineBiochemical studiesMembrane phospholipidsMalaria parasitesPlasmodium parasitesSevere growthPathwaySignificant defectsParasitesComplete lossGenetic evidence for the essential role of PfNT1 in the transport and utilization of xanthine, guanine, guanosine and adenine by Plasmodium falciparum
Bissati K, Downie MJ, Kim SK, Horowitz M, Carter N, Ullman B, Mamoun C. Genetic evidence for the essential role of PfNT1 in the transport and utilization of xanthine, guanine, guanosine and adenine by Plasmodium falciparum. Molecular And Biochemical Parasitology 2008, 161: 130-139. PMID: 18639591, PMCID: PMC2612043, DOI: 10.1016/j.molbiopara.2008.06.012.Peer-Reviewed Original ResearchConceptsPlasmodium falciparumPurine sourcePurine ring de novoP. falciparum parasitesP. falciparum strainsNon-physiological concentrationsFalciparum parasitesFalciparum strainsMalaria parasitesEpisomal complementationKnockout parasitesParasite strainsGenetic evidencePhysiological concentrationsPurine salvagePfNT1Functional rolePurine uptakeFalciparumAdenosineEssential roleParasitesDe novoGuanineXanthine
2006
The plasma membrane permease PfNT1 is essential for purine salvage in the human malaria parasite Plasmodium falciparum
Bissati K, Zufferey R, Witola WH, Carter NS, Ullman B, Mamoun C. The plasma membrane permease PfNT1 is essential for purine salvage in the human malaria parasite Plasmodium falciparum. Proceedings Of The National Academy Of Sciences Of The United States Of America 2006, 103: 9286-9291. PMID: 16751273, PMCID: PMC1482602, DOI: 10.1073/pnas.0602590103.Peer-Reviewed Original ResearchConceptsParasite plasma membraneHuman malaria parasite Plasmodium falciparumMalaria parasite Plasmodium falciparumParasite Plasmodium falciparumPurine salvagePlasma membraneLethal mutantsPlasmodium falciparumInosine transportPurine sourceSpecialized transportersTransgenic parasitesHost enzymesPfNT1Essential nutrientsPotential therapeutic targetParasitesPhysiological conditionsHost purinesInfected erythrocytesSequential pathwaySevere reductionTherapeutic targetP. falciparumHuman erythrocytes